1) Develop a linear regression model to predict company revenue, using CPI as th
ID: 3240090 • Letter: 1
Question
1) Develop a linear regression model to predict company revenue, using CPI as the only independent variable.
2) Develop a linear regression model to predict company revenue, using Personal Consumption as the only independent variable.
3) Develop a linear regression model to predict company revenue, using Retail Sales Index as the only independent variable.
4) Which of these three models is the best? Use R-square value, Significance F values and other appropriate criteria to explain your answer.
Identify and remove the four cases corresponding to December revenue.
5) Develop a linear regression model to predict company revenue, using CPI as the only independent variable.
6) Develop a linear regression model to predict company revenue, using Personal Consumption as the only independent variable.
7) Develop a linear regression model to predict company revenue, using Retail Sales Index as the only independent variable.
8) Which of these three models is the best? Use R-square values and Significance F values to explain your answer.
9) Comparing the results of parts (d) and (h), which of these two models is better? Use R-square values
Date Revenue CPI Personal Consumption Retail Sales Index December 11/28/04 14.764 552.7 7868495 301337 0 12/30/04 23.106 552.1 7885264 357704 1 1/30/05 12.131 554.9 7977730 281463 0 2/27/05 13.628 557.9 8005878 282445 0 3/31/05 16.722 561.5 8070480 319107 0 4/29/05 13.98 563.2 8086579 315278 0 5/28/05 14.388 566.4 8196516 328499 0 6/30/05 18.111 568.2 8161271 321151 0 7/27/05 13.764 567.5 8235349 328025 0 8/27/05 14.296 567.6 8246121 326280 0 9/30/05 17.169 568.7 8313670 313444 0 10/29/05 13.915 571.9 8371605 319639 0 11/29/05 15.739 572.2 8410820 324067 0 12/31/05 26.177 570.1 8462026 386918 1 1/21/06 13.17 571.2 8469443 293027 0 2/24/06 15.139 574.5 8520687 294892 0 3/30/06 18.683 579 8568959 338969 0 4/29/06 14.829 582.9 8654352 335626 0 5/25/06 15.697 582.4 8644646 345400 0 6/28/06 20.23 582.6 8724753 351068 0 7/28/06 15.26 585.2 8833907 351887 0 8/26/06 15.709 588.2 8825450 355897 0 9/30/06 18.618 595.4 8882536 333652 0 10/31/06 15.397 596.7 8911627 336662 0 11/28/06 17.384 592 8916377 344441 0 12/30/06 27.92 589.4 8955472 406510 1 1/27/07 14.555 593.9 9034368 322222 0 2/23/07 18.684 595.2 9079246 318184 0 3/31/07 16.639 598.6 9123848 366989 0 4/28/07 20.17 603.5 9175181 357334 0 5/25/07 16.901 606.5 9238576 380085 0 6/30/07 21.47 607.8 9270505 373279 0 7/28/07 16.542 609.6 9338876 368611 0 8/29/07 16.98 610.9 9352650 382600 0 9/28/07 20.091 607.9 9348494 352686 0 10/20/07 16.583 604.6 9376027 354740 0 11/24/07 18.761 603.6 9410758 363468 0 12/29/07 28.795 604.5 9478531 424946 1 1/26/08 20.473 606.348 9540335 332797 0Explanation / Answer
Answer:
1) Develop a linear regression model to predict company revenue, using CPI as the only independent variable.
Regression Analysis
r²
0.114
n
39
r
0.337
k
1
Std. Error
3.689
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
64.5907
1
64.5907
4.75
.0358
Residual
503.6320
37
13.6117
Total
568.2228
38
Regression output
confidence interval
variables
coefficients
std. error
t (df=37)
p-value
95% lower
95% upper
Intercept
-24.4085
19.2485
-1.268
.2127
-63.4097
14.5926
CPI
0.0718
0.0330
2.178
.0358
0.0050
0.1386
2) Develop a linear regression model to predict company revenue, using Personal Consumption as the only independent variable.
Regression Analysis
r²
0.155
n
39
r
0.394
k
1
Std. Error
3.602
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
88.21939269
1
88.21939269
6.80
.0131
Residual
480.00339767
37
12.97306480
Total
568.22279036
38
Regression output
confidence interval
variables
coefficients
std. error
t (df=37)
p-value
95% lower
95% upper
Intercept
-8.8951
10.1390
-0.877
.3860
-29.4387
11.6485
Personal Consumption
0.00000303
0.00000116
2.608
.0131
0.00000068
0.00000538
3) Develop a linear regression model to predict company revenue, using Retail Sales Index as the only independent variable.
Regression Analysis
r²
0.574
n
39
r
0.757
k
1
Std. Error
2.559
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
325.97007804
1
325.97007804
49.79
2.39E-08
Residual
242.25271232
37
6.54737060
Total
568.22279036
38
Regression output
confidence interval
variables
coefficients
std. error
t (df=37)
p-value
95% lower
95% upper
Intercept
-13.8040
4.4557
-3.098
.0037
-22.8320
-4.7759
Retail Sales Index
0.00009186
0.00001302
7.056
2.39E-08
0.00006548
0.00011824
4) Which of these three models is the best? Use R-square value, Significance F values and other appropriate criteria to explain your answer.
R-square value of Retail Sales Index ( 0.574) is highest.
linear regression model to predict company revenue, using Retail Sales Index is the best model.
Identify and remove the four cases corresponding to December revenue.
5) Develop a linear regression model to predict company revenue, using CPI as the only independent variable.
Regression Analysis
r²
0.416
n
35
r
0.645
k
1
Std. Error
1.827
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
78.3486
1
78.3486
23.48
2.91E-05
Residual
110.1228
33
3.3371
Total
188.4713
34
Regression output
confidence interval
variables
coefficients
std. error
t (df=33)
p-value
95% lower
95% upper
Intercept
-33.1342
10.2427
-3.235
.0028
-53.9731
-12.2954
CPI
0.0849
0.0175
4.845
2.91E-05
0.0493
0.1205
6) Develop a linear regression model to predict company revenue, using Personal Consumption as the only independent variable.
Regression Analysis
r²
0.404
n
35
r
0.635
k
1
Std. Error
1.846
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
76.06360218
1
76.06360218
22.33
4.13E-05
Residual
112.40771856
33
3.40629450
Total
188.47132074
34
Regression output
confidence interval
variables
coefficients
std. error
t (df=33)
p-value
95% lower
95% upper
Intercept
-10.0401
5.6194
-1.787
.0832
-21.4730
1.3927
Personal Consumption
0.00000304
0.00000064
4.725
4.13E-05
0.00000173
0.00000435
7) Develop a linear regression model to predict company revenue, using Retail Sales Index as the only independent variable.
Regression Analysis
r²
0.325
n
35
r
0.570
k
1
Std. Error
1.964
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
61.22234780
1
61.22234780
15.88
.0004
Residual
127.24897294
33
3.85602948
Total
188.47132074
34
Regression output
confidence interval
variables
coefficients
std. error
t (df=33)
p-value
95% lower
95% upper
Intercept
-0.6013
4.2980
-0.140
.8896
-9.3458
8.1431
Retail Sales Index
0.00005101
0.00001280
3.985
.0004
0.00002497
0.00007706
8) Which of these three models is the best? Use R-square values and Significance F values to explain your answer.
R-square value of CPI (0.416) is highest.
linear regression model to predict company revenue, using CPI is the best model.
9) Comparing the results of parts (d) and (h), which of these two models is better? Use R-square values
Using R-square value of Retail Sales Index in d is highest.
linear regression model to predict company revenue in part d is better.
Regression Analysis
r²
0.114
n
39
r
0.337
k
1
Std. Error
3.689
Dep. Var.
Revenue
ANOVA table
Source
SS
df
MS
F
p-value
Regression
64.5907
1
64.5907
4.75
.0358
Residual
503.6320
37
13.6117
Total
568.2228
38
Regression output
confidence interval
variables
coefficients
std. error
t (df=37)
p-value
95% lower
95% upper
Intercept
-24.4085
19.2485
-1.268
.2127
-63.4097
14.5926
CPI
0.0718
0.0330
2.178
.0358
0.0050
0.1386
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.