Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1.At the start of the growing season, two types of fertilizer were applied to la

ID: 3134970 • Letter: 1

Question

1.At the start of the growing season, two types of fertilizer were applied to large plots of land, growing ponderosa pine seedlings. Organic fertilizer was applied to seven plots and inorganic was applied to eight plots. After one year, the plots were harvested and the total biomass measurements (in grams) per plot were recorded:

Organic

Inorganic

570

634

482

482

592

493

593

445

630

558

513

460

512

583

560

a) Is the biomass after one year significantly different by fertilizer type? Use a 0.05 level of significance. Assume s21 = s22.

b)Construct a 95% confidence interval for the difference between the two fertilizer types. Interpret its meaning.

c) Re-do (a) and (b), assuming s21 s22.

Organic

Inorganic

570

634

482

482

592

493

593

445

630

558

513

460

512

583

560

Explanation / Answer

1.

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   =   0  
Ha:   u1 - u2   =/   0  

At level of significance =    0.05          

As we can see, this is a    two   tailed test.      
Calculating the means of each group,              
              
X1 =    569.8571429          
X2 =    514.75          
              
Calculating the standard deviations of each group,              
              
s1 =    54.18618696          
s2 =    57.12079931          
              
Thus, the pooled standard deviation is given by              
              
S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
              
As n1 =    7   , n2 =    8  
              
Then              
              
S =    55.78554896          
              
Thus, the standard error of the difference is              
              
Sd = S sqrt (1/n1 + 1/n2) =    28.87176453          
              
As ud = the hypothesized difference between means =    0   , then      
              
t = [X1 - X2 - ud]/Sd =    1.90868635          
              
Getting the critical value using table/technology,              
df = n1 + n2 - 2 =    13          
tcrit =    +/-   2.160368656      
              
Getting the p value using technology,              
              
p =    0.078722145          
              
As |t| < 2.160, and P > 0.05, we FAIL TO   REJECT THE NULL HYPOTHESIS.          

Hence, the biomass after one year not significantly different by fertilizer type at 0.05 level. [CONCLUSION]

****************************

b)

For the   0.95   confidence level, then      
              
alpha/2 = (1 - confidence level)/2 =    0.025          
t(alpha/2) =    2.160368656          
              
lower bound = [X1 - X2] - t(alpha/2) * sD =    -7.266512298          
upper bound = [X1 - X2] + t(alpha/2) * sD =    117.480798          
              
Thus, the confidence interval is              
              
(   -7.266512298   ,   117.480798   )

Hence, we are 95% confident that the true mean difference in mean biomass after one year for organic and inorganic fertilizers is between 7.266512298 and    117.480798 grams. [ANSWER]

*****************************

c)

Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   =   0  
Ha:   u1 - u2   =/   0  
At level of significance =    0.05          
As we can see, this is a    two   tailed test.      
Calculating the means of each group,              
              
X1 =    569.8571429          
X2 =    514.75          
              
Calculating the standard deviations of each group,              
              
s1 =    54.18618696          
s2 =    57.12079931          
              
Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
              
n1 = sample size of group 1 =    7          
n2 = sample size of group 2 =    8          
Thus, df = n1 + n2 - 2 =    13          
Also, sD =    28.76277445          
              
Thus, the t statistic will be              
              
t = [X1 - X2 - uD]/sD =    1.915918889          
              
where uD = hypothesized difference =    0          
              
Now, the critical value for t is              
              
tcrit =    +/-   2.160368656      
              
              
Also, using p values,              
              
p =    0.077628323          
              
As |t| < 2.160, and P > 0.05,    WE FAIL TO REJECT THE NULL HYPOTHESIS.          
              
Hence, the biomass after one year not significantly different by fertilizer type at 0.05 level. [CONCLUSION]  
              
******************************************              
              
For the   0.95   confidence level, then      
              
alpha/2 = (1 - confidence level)/2 =    0.025          
t(alpha/2) =    2.160368656          
              
lower bound = [X1 - X2] - t(alpha/2) * sD =    -7.031053531          
upper bound = [X1 - X2] + t(alpha/2) * sD =    117.2453392          
              
Thus, the confidence interval is              
              
(   -7.031053531   ,   117.2453392   )

Hence, we are 95% confident that the true mean difference in mean biomass after one year for organic and inorganic fertilizers is between -7.031053531 and 117.2453392 grams. [ANSWER]

*****************************************************

Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!