Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

4) The standard deviation of the number of Metropolitan New York Bus Authority b

ID: 3133117 • Letter: 4

Question

4) The standard deviation of the number of Metropolitan New York Bus Authority busses that

are being repaired on a given day is 6. The Chief Operating Officer takes a sample of 50 days

and finds that the mean number of busses being repaired on each day is 82.

a) What is a point estimate of the mean number of busses being repaired on each day?

b) Construct a 90% CI of the mean number of busses being repaired on each day.

c) Construct a 99% CI of the mean number of busses being repaired on each day

Explanation / Answer

a) What is a point estimate of the mean number of busses being repaired on each day?

It is the sample mean,

X = 82 [ANSWER]

********************

b) Construct a 90% CI of the mean number of busses being repaired on each day.

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    82          
z(alpha/2) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    6          
n = sample size =    50          
              
Thus,              
Margin of Error E =    1.395704584          
Lower bound =    80.60429542          
Upper bound =    83.39570458          
              
Thus, the confidence interval is              
              
(   80.60429542   ,   83.39570458   ) [ANSWER]

*************************

c) Construct a 99% CI of the mean number of busses being repaired on each day

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    82          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    6          
n = sample size =    50          
              
Thus,              
Margin of Error E =    2.185663641          
Lower bound =    79.81433636          
Upper bound =    84.18566364          
              
Thus, the confidence interval is              
              
(   79.81433636   ,   84.18566364   ) [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote