Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Let X be normally distributed with mean = 140 and standard deviation = 28. Use T

ID: 3129615 • Letter: L

Question

Let X be normally distributed with mean = 140 and standard deviation = 28. Use Table 1. a.

1. Find P(X 100)

2. Find P(95 X 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)

3.

Find x such that P(X x) = 0.063. (Round "z" value to 2 decimal places and final answer to 2 decimal places.)

4. Find x such that P(X > x) = 0.352. (Round "z" value to 2 decimal places and final answer to 2 decimal place.)

Find x such that P(X x) = 0.063. (Round "z" value to 2 decimal places and final answer to 2 decimal places.)

4. Find x such that P(X > x) = 0.352. (Round "z" value to 2 decimal places and final answer to 2 decimal place.)

Explanation / Answer

1.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    100      
u = mean =    140      
          
s = standard deviation =    28      
          
Thus,          
          
z = (x - u) / s =    -1.43      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -1.43   ) =    0.0764 [ANSWER]

********************

2.

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    95      
x2 = upper bound =    110      
u = mean =    140      
          
s = standard deviation =    28      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.61      
z2 = upper z score = (x2 - u) / s =    -1.07      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.0537      
P(z < z2) =    0.1423      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.0886       [ANSWER]

*******************

3.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.063      
          
Then, using table or technology,          
          
z =    -1.53      
          
As x = u + z * s,          
          
where          
          
u = mean =    140      
z = the critical z score =    -1.53      
s = standard deviation =    28      
          
Then          
          
x = critical value =    97.16   [ANSWER]

********************

4.

First, we get the z score from the given left tailed area. As          
          
Left tailed area = 1-0.352 =   0.648      
          
Then, using table or technology,          
          
z =    0.38      
          
As x = u + z * s,          
          
where          
          
u = mean =    140      
z = the critical z score =    0.38      
s = standard deviation =    28      
          
Then          
          
x = critical value =    150.64   [ANSWER]