Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Let X = number of flaws on an electroplated automobile grill. Its distribution i

ID: 3155865 • Letter: L

Question

Let X = number of flaws on an electroplated automobile grill. Its distribution is modeled by the following PMF:

1. What is the probability that there are at most 1 flaw on the grill, i.e. P(X less than or equal to 1)?

2. Let Y be total number of grills with at most 1 flaw in a random sample of 100 grills. What is the exact distribution of Y ? Please specify name and parameter values
for distribution of Y .

Find the probability that no grills from the sample of 100 has at most 1 flaw, using the exact distribution.

4. What is the approximate distribution of Y ? Please specify name and parameter values for distribution of Y .

5. Find the probability that less than 85 grills have at most 1 flaw, using the approximate distribution of Y .

x 0 1 2 3 p(x) 0.8 0.1 0.05 0.05

Explanation / Answer

a)

P(x<=1) = P(0) + P(1) = 0.8 + 0.1 = 0.9 [ANSWER]

**********************

2.

It is a binomial distribution with n = 100, p = 0.9.

***********************

3.

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    100      
p = the probability of a success =    0.9      
x = the number of successes =    0      
          
Thus, the probability is          
          
P (    0   ) =    1*10^-100 [ANSWER]

**************************

4.

It is approximately a normal distribution with

u = mean = np =    90
  
s = standard deviation = sqrt(np(1-p)) =    3 [ANSWER]

***************************
5.

We first get the z score for the critical value:          
          
x = critical value =    84.5      
u = mean = np =    90      
          
s = standard deviation = sqrt(np(1-p)) =    3      
          
Thus, the corresponding z score is          
          
z = (x-u)/s =    -1.833333333      
          
Thus, the left tailed area is          
          
P(z <   -1.833333333   ) =    0.033376508 [ANSWER]