Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The length of human pregnancies from conception to birth varies according to a d

ID: 3126542 • Letter: T

Question

The length of human pregnancies from conception to birth varies according to a distribution that is approximately Normal with mean 269 days and standard deviation 18 days.

(a) What proportion of pregnancies last less than 270 days (about 9 months)?
  (Please use 4 decimal places.)

(b) What proportion of pregnancies last between 240 and 270 days (roughly between 8 months and 9 months)?
  (Please use 4 decimal places.)

(c) How long do the longest 20% of pregnancies last?
  (Please use 2 decimal places.)


The quartiles of any distribution are the values with cumulative proportions 0.25 and 0.75.

(d) What are the quartiles of the standard Normal distribution? (Use 2 decimal places.)

Q1 =  
Q3 =  

(e) What are the quartiles of the distribution of lengths of human pregnancies? Please use 2 decimal places.

Q1 =  
Q3 =

Explanation / Answer

a)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    270      
u = mean =    269      
          
s = standard deviation =    18      
          
Thus,          
          
z = (x - u) / s =    0.055555556      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   0.055555556   ) =    0.522152064 [ANSWER]

*******************

b)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    240      
x2 = upper bound =    270      
u = mean =    269      
          
s = standard deviation =    18      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.611111111      
z2 = upper z score = (x2 - u) / s =    0.055555556      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.053577754      
P(z < z2) =    0.522152064      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.468574311   [ANSWER]

************************

c)

First, we get the z score from the given left tailed area. As          
          
Left tailed area = 1-0.20 =   0.8      
          
Then, using table or technology,          
          
z =    0.841621234      
          
As x = u + z * s,          
          
where          
          
u = mean =    269      
z = the critical z score =    0.841621234      
s = standard deviation =    18      
          
Then          
          
x = critical value =    284.1491822   [ANSWER]

************************

d)

Q1:

We get the z score from the given left tailed area. As      
      
Left tailed area =    0.25  
      
Then, using table or technology,      
      
Q1 = z =    -0.67448975   [ANSWER]

****

Q3:

We get the z score from the given left tailed area. As      
      
Left tailed area =    0.75  
      
Then, using table or technology,      
      
Q3: z =    0.67448975   [ANSWER]

*************************

e)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.25      
          
Then, using table or technology,          
          
z =    -0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    269      
z = the critical z score =    -0.67448975      
s = standard deviation =    18      
          
Then          
          
Q1 = x = critical value =    256.8591845   [ANSWER]

**************  

Q3:

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.75      
          
Then, using table or technology,          
          
z =    0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    269      
z = the critical z score =    0.67448975      
s = standard deviation =    18      
          
Then          
          
x = critical value =    281.1408155   [ANSWER, Q3]  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote