Determine whether the series: converges ordiverges. If it converges then find it
ID: 3088960 • Letter: D
Question
Determine whether the series: converges ordiverges. If it converges then find its sum. 25^-n+2.16^n+1 n=1 Determine whether the series: converges ordiverges. If it converges then find its sum. 25^-n+2.16^n+1 n=1 25^-n+2.16^n+1 n=1 Determine whether the series: converges ordiverges. If it converges then find its sum. 25^-n+2.16^n+1 n=1Explanation / Answer
I think this is what you are asking. If I mis-read thequestion, please let me know, and we can make changes. n=125(-n+2)16(n+1)=n=125-n25216n161= 252161n=125-n16n= 10000 n=116n/25n= 10000 n=1(16/25)n = 10000 n=1 .64n= 10000 n=0.64(.64)n . Since .64<1, we know this seriesconverges. 10000(.64) / (1 -.64) = 6400/.36=17777.78, so the sumconverges to 17777.78 10000 n=0.64(.64)n . Since .64<1, we know this seriesconverges. 10000(.64) / (1 -.64) = 6400/.36=17777.78, so the sumconverges to 17777.78
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.