Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

3.10. A product developer is investigating the tensile strength of a new synthet

ID: 3044906 • Letter: 3

Question

3.10. A product developer is investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men's shirts. Strength is usually affected by the percentage of cotton used in the blend of materials for the fiber. The engineer conducts a completely randomized experiment with five levels of cotton content and replicates the experiment five times. The data are shown in the following table Cotton Weight Percent Observations 15 20 25 30 35 7 15 12 17 12 8 18 14 19 25 22 19 23 7 10 5 19 19 18 18 (a) Obtain the ANOVA table and do the test of Ho of equal means. (b) Test 2 at level of significance = (c) Obtain a 95% CI, for the contrast in (b). (d) Give the tot al number of (meaningful) contrasts (e) Give a maximal set of mutually orthogonal contrasts (f) How many possible contrasts are there if you use Scheffe's method for multiple comparisons'met hods? (g) How many possible pairs can be obtained if you want to use Tukey's method? (h) Compare all possible pairs by Tukey's method, Scheffe's method, and Bonferroni's method at 90% C.1. Which method gives the shortest interval? Which gives the worst? (i) What is your recommendation?

Explanation / Answer

a)

ANOVA : Single Factor as COTTON WEIGHT %

SUMMARY

COTTON WEIGHT %

Count

Sum

Average

Variance

15

5

49

9.8

11.2

20

5

77

15.4

9.8

25

5

88

17.6

4.3

30

5

108

21.6

6.8

35

5

54

10.8

8.2

ANOVA

Source of Variation

SS

df

MS

F

P-value

F critical

Between Groups

475.76

4

118.94

14.75682

9.13E-06

2.866081

Within Groups

161.2

20

8.06

Total

636.96

24

One-way ANOVA: Strength versus Weight

Analysis of Variance for Stength

Source     DF        SS        MS        F        P

Weight      4    475.76    118.94    14.76    0.000

Error      20    161.20      8.06

Total      24    636.96

                                   Individual 95% CIs For Mean

                                   Based on Pooled StDev

Level       N      Mean     StDev ------+---------+---------+---------+

15          5     9.800     3.347 (-----*----)

20          5    15.400     3.130              (----*----)

25          5    17.600     2.074                  (----*----)

30          5    21.600     2.608                          (----*----)

35          5    10.800     2.864    (-----*----)

                                   ------+---------+---------+---------+

Pooled StDev =    2.839               10.0     15.0      20.0      25.0

Tukey's pairwise comparisons

    Family error rate = 0.0500

Individual error rate = 0.00722

Critical value = 4.23

Intervals for (column level mean) - (row level mean)

                15          20          25          30

      20     -10.971

              -0.229

      25     -13.171      -7.571

              -2.429       3.171

      30     -17.171     -11.571      -9.371

              -6.429      -0.829       1.371

      35      -6.371      -0.771       1.429       5.429

               4.371       9.971      12.171      16.171

From above two outputs of one way ANOVA with Strength as a factor it is seen that p-value = 9.13E-06 < < 0.05 indicates that tensile strength of new synthetic fiber product varies with % cotton weight. The highest tensile strength is observed when cotton weight % is 35.

b) To test the hypothesis H0: (1+ 5) /2 =(2 + 3 + 4)/3, we will convert the observed data accordingly.

ANOVA : Single Factor

SUMMARY

Groups

Count

Sum

Average

Variance

A

(Average of 15 and 35 % cotton weight)

5

51.5

10.3

7.2

B

(Average of 20. 25 and 25 % cotton weight)

5

91

18.2

4.311111

ANOVA

Source of Variation

SS

df

MS

F

P-value

F crit

Between Groups

156.025

1

156.025

27.10859

0.000816

5.317655

Within Groups

46.04444

8

5.755556

Total

202.0694

9

From above ANOVA table it is clear that the proposed hypothesis is rejected as p-value = 0.000816 < < 0.05.

One-way ANOVA: Tensile Strength versus Cotton Weight

Analysis of Variance for Tensile Strength

Source     DF        SS        MS        F        P

Weight      1    156.03    156.03    27.11    0.001

Error       8     46.04      5.76

Total       9    202.07

                                   Individual 95% CIs For Mean

                                   Based on Pooled StDev

Level       N      Mean     StDev --------+---------+---------+--------

1           5    10.300     2.683 (------*------)

2           5    18.200     2.076                         (------*------)

                                   --------+---------+---------+--------

Pooled StDev =    2.399                 10.5      14.0      17.5

Tukey's pairwise comparisons

    Family error rate = 0.0500

Individual error rate = 0.0500

Critical value = 3.26

Intervals for (column level mean) - (row level mean)

                 1

       2     -11.399

              -4.401

From above ANOVA output it is seen that the equal mixture of 20, 25 and 30 % cotton weight gives better tensile strength as compared to that when 15 and 35 % weight of cotton is mixed equally.

ANOVA : Single Factor as COTTON WEIGHT %

SUMMARY

COTTON WEIGHT %

Count

Sum

Average

Variance

15

5

49

9.8

11.2

20

5

77

15.4

9.8

25

5

88

17.6

4.3

30

5

108

21.6

6.8

35

5

54

10.8

8.2

ANOVA

Source of Variation

SS

df

MS

F

P-value

F critical

Between Groups

475.76

4

118.94

14.75682

9.13E-06

2.866081

Within Groups

161.2

20

8.06

Total

636.96

24

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote