a psychologist determined that the number of sessions required to obtain the tru
ID: 3040418 • Letter: A
Question
a psychologist determined that the number of sessions required to obtain the trust of a new patient is either 1, 2, or 3. Let X be a random value indicating the number of sessions required to gain the patient's trust. The following probabilty fuction has been proposed. f(x) =X/6 FOR 1,2, 0R 3. Consider the required conditions for a discrete probability function. f(x) > 0 (5.1.) f(x)=1 (5.2) What is the probablity that it takes exactly 2 sessions to gain the patients trust (to 3 decimals)? What is the probabilty that it takes at least 2 sessions to gain the patients trust (to 3 decimals)
Explanation / Answer
a) P(exactly 2 sessions) = P(X = 2) = 2/6 = 0.333
b) P(at least 2 sessions) = P(X > 2) = 1 - P(X = 3) = 1 - 3/6 = 0.5
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.