Determine a region of the xy -plane for which the given differential equation wo
ID: 2987077 • Letter: D
Question
Determine a region of the xy-plane for which the given differential equation would have a unique solution whose graph passes through a point (x0, y0) in the region.style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">style="font-style: italic;">style="font-style: italic;">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
xdx/dy = y
Explanation / Answer
x*dx=y*dy
x^2=y^2+c
c=constant of integration
putting (x0,y0)
we get c=x0^2-y0^2
so equation given
y=sqrt(x^2-x0^2+y0^2)
so the region of xy plane is given by
x^2-x0^2+y0^2>=0
x>=sqrt(x0^2-y0^2)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.