The data in this problem are a set of 6 integers a through f, which you see belo
ID: 2971096 • Letter: T
Question
The data in this problem are a set of 6 integers a through f, which you see below. Use a different set of [a b c d e f] for you submission;
a b c d e f
4 8 10 9 3 10
For the purposes of turning in your answer, define "m_1" to be the "a" that you use, "m_2" to be b, "m_3" to be c, "m_4" to be e, and "m_6" to be f.
Symbols like "ab" denote "a times b" in these problem. (not the decimal ab.0.)
1. Compute the (real and imaginary parts of the) principal value of the seventh root of
(abc + ide/f) to 3 decimal places (accurate to 10-3). Call the real part "m7", and the imaginary part "m8" (for the submission format on the last page). Do not include the i in m8.
Compute the other 6 seventh roots of (abc + ide/f) to 3 decimal places, listed counterclockwise around the origin in the complex plane.
Let m9 be the real part of the second root; let m10 be the imaginary part of the second root.
Let m11 be the real part of the third root; let m12 be the imaginary part of the third root.
And so on; m20 will be the imaginary part of the seventh root.
2. What, to 3 decimal places, is the principal value of [ab/f - ie](b - id)/9 (real and imaginary parts)? Call the real part "m21", and the imaginary part "m22". Simply ask MATLAB for (a*b/f - i*e)^((b - i*d)/9) .
---------------------------------------------------------------------------------------------------------------------------------------------------------
NOTE : The answer is graded automatically by a MATLAB program. It is important that you submit your answers in the correct format.check your submission before you send it to me. As a check before you submit, open MATLAB, copy/paste your data in (including the brackets), and hit "Enter"; if it is in the proper format, MATLAB will neatly display the data as a 22-by-1 matrix. (Count the lines to be sure.)
NOTE: See Example on how should be done; see below
M=[1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
1.3736
0.1164
1.2351
-3.3925
-3.0812
0.3644
-0.6362
11.2587
4.0550
-3.4148
3.5181
-0.2488
-0.8514
1.5821
-1.0000
2.2222]
Explanation / Answer
p=[];
p=[4 8 10 9 3 10]; %a=4,b=8,c=10,d=9,e=3,f=10;
z=p(1)*p(2)*p(3)+(p(4)*p(5)*i/p(6)); %(abc+ide/f);
r=abs(z);
theta=angle(z);
mat=[];
for j=0:1:6
mat(j+1)=((r^(1/7))*exp(i*(theta+j*2*pi)/7)); %calculating the 7 seventh-roots
end;
l=((p(1)*p(2)/p(6))-p(6)*i)^((p(2)-p(4)*i)/9); %[ab/f- ie]^(b - id)/9;
l_r=real(l);
l_img=imag(l);
o=[];
for k=1:1:6
o(k)=p(k); %putting the values of p in o matrix;
end;
for k=7:1:13
o(k)=real(mat(k-6)); %putting the values of real part of mat in o matrix;
end;
for k=14:1:20
o(k)=imag(mat(k-13)); %putting the values of imaginary part of mat in o matrix;
end;
o(k+1)=l_r; %putting the values of real part of l in o matrix;
o(k+2)=l_img; %putting the values of imaginary in o matrix;
disp('your requred matrix.............................');
disp(o);
%your output->
%your requred matrix.............................
%Columns 1 through 10
% 4.0000 8.0000 10.0000 9.0000 3.0000 10.0000 2.2797 1.4192 -0.5100 -2.0551
%Columns 11 through 20
%-2.0528 -0.5046 1.4235 0.0027 1.7841 2.2219 0.9867 -0.9916 -2.2232 -1.7806
%Columns 21 through 22
%-2.1668 0.7439
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.