Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

y=63.1624x+163.9988 A) preidct the mean test 2 score for entering freshman who s

ID: 2946689 • Letter: Y

Question

y=63.1624x+163.9988

A) preidct the mean test 2 score for entering freshman who score (29) on the test 1.

B) Construct a 95% and 90% confidence interval for the mean test 2 score for entering freshmen who score a (29) on the test 1is lower bound and upper bound?

C) Construct a 95% prediction interval for the test 2 score for a randomly selected freshman who scores (29) on test the test 1 lower and upper bound?

Full data set Test 1, x 18 27 18 20 25 25 Test 2, y 1390 1340 1910 1150 1360 1780 1590 Test 1, x 19 17 28 30 20 18 Test 2, y 1470 1190 1770 2290 1660 1480 1370 The least-squares regression equation is y 63.1624x + 163.9988.

Explanation / Answer

Result:

A) preidct the mean test 2 score for entering freshman who score (29) on the test 1.

B) Construct a 95% and 90% confidence interval for the mean test 2 score for entering freshmen who score a (29) on the test 1is lower bound and upper bound?

95% CI = (1813.883, 2177.533)

90% CI = (1846.974, 2144.443)

C) Construct a 95% prediction interval for the test 2 score for a randomly selected freshman who scores (29) on test the test 1 lower and upper bound?

95% PI= (1607.399, 2384.018)

Regression Analysis

0.758

n

14

r

0.871

k

1

Std. Error

157.475

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

933,540.1709

1  

933,540.1709

37.65

.0001

Residual

297,581.2576

12  

24,798.4381

Total

1,231,121.4286

13  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=12)

p-value

95% lower

95% upper

Intercept

163.9988

230.3558

0.712

.4901

-337.9035

665.9010

x

63.1624

10.2945

6.136

.0001

40.7327

85.5921

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

Predicted

lower

upper

lower

upper

Leverage

29

1,995.708

1,813.883

2,177.533

1,607.399

2,384.018

0.281

Predicted values for: y

90% Confidence Interval

90% Prediction Interval

x

Predicted

lower

upper

lower

upper

Leverage

29

1,995.708

1,846.974

2,144.443

1,678.068

2,313.349

0.281

Regression Analysis

0.758

n

14

r

0.871

k

1

Std. Error

157.475

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

933,540.1709

1  

933,540.1709

37.65

.0001

Residual

297,581.2576

12  

24,798.4381

Total

1,231,121.4286

13  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=12)

p-value

95% lower

95% upper

Intercept

163.9988

230.3558

0.712

.4901

-337.9035

665.9010

x

63.1624

10.2945

6.136

.0001

40.7327

85.5921

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

Predicted

lower

upper

lower

upper

Leverage

29

1,995.708

1,813.883

2,177.533

1,607.399

2,384.018

0.281