Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 1 contains the actual values for 12 periods (listed in order, 1-12). In

ID: 2931597 • Letter: Q

Question

Question 1 contains the actual values for 12 periods (listed in order, 1-12). In Excel, create forecasts for periods 6-13 using each of the following methods: 5 period simple moving average; 4 period weighted moving average (0.63, 0.26, 0.08, 0.03); exponential smoothing (alpha = 0.23 and the forecast for period 5 = 53); linear regression with the equation based on all 12 periods; and quadratic regression with the equation based on all 12 periods.  Round all numerical answers to two decimal places.

1. The actual values for 12 periods (shown in order) are:

(1) 45  (2) 52 (3) 48 (4) 59  (5) 55  (6) 58  (7) 64  (8) 61  (9) 71  (10) 66  (11) 66  (12) 77

Using a 5 period simple moving average, the forecast for period 13 will be:

2.Using the 4 period weighted moving average, the forecast for period 13 will be:

3.With exponential smoothing, the forecast for period 13 will be:

4.With linear regression, the forecast for period 13 will be:

5.With quadratic regression, the forecast for period 13 will be:

6.Considering only the forecasts for period 6-12, what is the lowest MAD value for any of the methods?

Explanation / Answer

time

time^2

data

ma

w.Av

expo

linear

quad

1

1

45

46.9359

46.61538

2

4

52

45

49.34149

49.1958

3

9

48

46.61

51.74709

51.74126

4

16

59

46.9297

54.15268

54.25175

5

25

55

47.48

49.705869

56.55828

56.72727

6

36

58

51.8

51.61

50.92351913

58.96387

59.16783

7

49

64

54.4

51.72

52.55110973

61.36946

61.57343

8

64

61

56.8

58.03

55.18435449

63.77506

63.94406

9

81

71

59.4

56.68

56.52195296

66.18065

66.27972

10

100

66

61.8

60.19

59.85190378

68.58625

68.58042

11

121

66

64

63.84

61.26596591

70.99184

70.84615

12

144

77

65.6

64.15

62.35479375

73.39744

73.07692

13

169

-

68.2

69.48

65.72319119

75.80303

75.27273

Mt is the predicted value at time t and Yt is the actual value

Moving average for period of 5 is calculated by: (45+52+48+59+55)/5 = 51.8 = M6

M7 = (52+48+59+55+58)/2 = 54.4

And so on

Weighted moving average for period 4 is calculated by : (0.63*45+0.26*52+0.08*48+0.03*59)=M5 = 47.48

M6 = (0.63*52+0.26*48+0.08*59+0.03*55)=51.61

And so on.

Exponential smoothing with alpha = 0.23

M3 = alpha* 48 + (1-alpha)*45 = 46.61

M4 = alpha* 59 + (1-alpha)*46.61 = 46.9297

And so on.

Linear regression:

Regress time on Yt . use excel data toolpack, data > data analysis > regression.

Input Y(data) range and x(time) range

The model is given by:

Coefficients

Standard Error

t Stat

P-value

Lower

95%

Upper

95%

Lower 95.0%

Upper 95.0%

Intercept

44.53030303

2.254139

19.754

9

2.42E-09

39.507

77

49.552

84

39.50777

49.55284

time

2.405594406

0.306277

04

7.8543

1.38E-05

1.723166

3.088023

1.723166

3.088023

Y = 44.53030 + 2.40559*time

Substitute time =13

Y13 = 75.80303

Quadratic regression:

Regress time(x) and time-square(x2) on Y.

Input Y(data) range and x and x2 together.

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

44

3.984031

11.04409

1.56E-06

34.9875

53.0125

34.9875

53.0125

time

2.632867

1.409062

1.868525

0.094521

-0.55465

5.820386

-0.55465

5.820386

time^2

-0.01748

0.105515

-0.16569

0.872065

-0.25617

0.221209

-0.25617

0.221209

Y = 44 + 2.6328*time – 0.01748*time2

Substitute x=13and x2 =169

Y = 75.2727

MSD is calculated as:

MSD = average of (Mt – Yt)2 t =6,7,…,12

time

msd_ma

msd_wma

msd_exp

msd_lin

msd_qua

6

38.44

40.8321

29.69041

0.929044

1.363832

7

92.16

150.7984

77.71561

6.91972

5.888259

8

17.64

8.8209

20.05291

7.700948

8.667465

9

134.56

205.0624

124.28

23.22611

22.28104

10

17.64

33.7561

22.41108

6.688674

6.658565

11

4

4.6656

13.28753

24.91848

23.48521

12

129.96

165.1225

127.1664

12.97847

15.39053

average

62.05714

87.008286

59.22914

11.90878

11.96213

Linear regression method has the lowest MAD = 11.9087.

time

time^2

data

ma

w.Av

expo

linear

quad

1

1

45

46.9359

46.61538

2

4

52

45

49.34149

49.1958

3

9

48

46.61

51.74709

51.74126

4

16

59

46.9297

54.15268

54.25175

5

25

55

47.48

49.705869

56.55828

56.72727

6

36

58

51.8

51.61

50.92351913

58.96387

59.16783

7

49

64

54.4

51.72

52.55110973

61.36946

61.57343

8

64

61

56.8

58.03

55.18435449

63.77506

63.94406

9

81

71

59.4

56.68

56.52195296

66.18065

66.27972

10

100

66

61.8

60.19

59.85190378

68.58625

68.58042

11

121

66

64

63.84

61.26596591

70.99184

70.84615

12

144

77

65.6

64.15

62.35479375

73.39744

73.07692

13

169

-

68.2

69.48

65.72319119

75.80303

75.27273

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote