Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Just need the answer to (4.35) 4.34 In the nerve-cell activity of a certain indi

ID: 2914267 • Letter: J

Question

Just need the answer to (4.35)

4.34

In the nerve-cell activity of a certain individual fly, the timeintervals between “spike” discharges followapproximately a normal distribution with mean15.6ms and standarddeviation 0.4ms. Let Y denote a randomly selected interspikeinterval. Find.

A)    Pr{Y>15}

B)     Pr { Y>16.5}

C)    Pr { 15< Y< 16.5}

D)    Pr {15<Y<15.5}

4.35

For the distribution of interspike-time intervals described inExercise 4.34, find the quartiles and the interquartile range.

Explanation / Answer

average, = 15.6ms standard dev, = 0.4ms A)    Pr{Y>15} P( ( Y - ) / ) = P( Z> (15- 15.6 ) / 0.4 ))
= P( Z >-1.5)
= 1- 0.0668 = 0.9332 B)     Pr { Y>16.5} P( ( Y - ) / ) = P( Z> (16.5- 15.6 ) / 0.4 ))
= P( Z >2.25)
= 1- 0.9878= 0.0122 C)    Pr{ 15< Y< 16.5} findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<16.5) P( ( Y - ) /) = P( Z< (16.5 - 15.6 ) / 0.4 ))
= P( Z <2.25)
= 0.9878 hence, Pr { 15< Y<16.5}=0.9878-0.0668 =0.921 D)    Pr{15<Y<15.5} findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<15.5) P( ( Y - ) /) = P( Z< (15.5 - 15.6 ) / 0.4 ))
= P( Z <-0.25)
= 0.4013 Pr{15<Y<15.5}=0.4013-0.0668 =0.3345 C)    Pr{ 15< Y< 16.5} findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<16.5) P( ( Y - ) /) = P( Z< (16.5 - 15.6 ) / 0.4 ))
= P( Z <2.25)
= 0.9878 hence, Pr { 15< Y<16.5}=0.9878-0.0668 =0.921 D)    Pr{15<Y<15.5} findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<15.5) P( ( Y - ) /) = P( Z< (15.5 - 15.6 ) / 0.4 ))
= P( Z <-0.25)
= 0.4013 Pr{15<Y<15.5}=0.4013-0.0668 =0.3345 findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<16.5) P( ( Y - ) /) = P( Z< (16.5 - 15.6 ) / 0.4 ))
= P( Z <2.25)
= 0.9878 hence, Pr { 15< Y<16.5}=0.9878-0.0668 =0.921 D)    Pr{15<Y<15.5} findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<15.5) P( ( Y - ) /) = P( Z< (15.5 - 15.6 ) / 0.4 ))
= P( Z <-0.25)
= 0.4013 Pr{15<Y<15.5}=0.4013-0.0668 =0.3345 findP(Y<15) P( ( Y - ) /) = P( Z< (15 - 15.6 ) / 0.4 ))
= P( Z <-1.5)
= 0.0668 findP(Y<15.5) P( ( Y - ) /) = P( Z< (15.5 - 15.6 ) / 0.4 ))
= P( Z <-0.25)
= 0.4013 Pr{15<Y<15.5}=0.4013-0.0668 =0.3345 findP(Y<15.5) P( ( Y - ) /) = P( Z< (15.5 - 15.6 ) / 0.4 ))
= P( Z <-0.25)
= 0.4013 Pr{15<Y<15.5}=0.4013-0.0668 =0.3345