15. -/1 points SCalcET8 4.3.015. Consider the equation below. (If an answer does
ID: 2891269 • Letter: 1
Question
15. -/1 points SCalcET8 4.3.015. Consider the equation below. (If an answer does not exist, enter DNE.) (a) Find the interval on which fis increasing. (Enter your answer using interval notation.) Find the interval on which fis decreasing. (Enter your answer using interval notation.) (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) = Find the interval on which fis concave up. (Enter your answer using interval notation.) Find the interval on which fis concave down. (Enter your answer using interval notation.) Need Help?Explanation / Answer
f(x) = e^(7x) + e^(-x)
DEriving :
f'(x) = 7e^(7x) - e^(-x) = 0
7e^(7x) = e^(-x)
e^(8x) = 1/7
8x = -ln(7)
x = -ln(7) / 8
Region 1 : (-inf , -ln7/8) :
Test = -2
f'comes out -7.3890502782296165, i.e negative
So, decreasing
Region 2 : (-ln7/8) , inf)
Test = 1
f'(1) = 7e^7 - e^-2 , positive surely
So, inc
Inc : (-ln(7)/8 , inf)
Dec : (-inf , -ln(7)/8)
-----------------------------------------------------------------
Clearly x = -ln(7)/8 is a pt of minimum
cus dec changes to inc there
When x = -ln(7)/8, we get
1.4576
So, local min val = 1.4576
local max val = DNE
-------------------------------------------------------------------
c) Inflection :
f'(x) = 7e^(7x) - e^(-x)
Deriving again :
f''(x) = 40e^(7x) + e^(-x) = 0
No solution
So, no inf pts
DNE
-------------------------------------------------------------------
Concvity :
Clearly f''(x) = 40e^(7x) + e^(-x) is positive everywhere
because both exponential terms are positive and gettin added together
So, concave up : (-inf , inf)
conc down : DNE
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.