Find a unit vector in the direction of which the function f(x, y) = 6e^2 - x sin
ID: 2882689 • Letter: F
Question
Find a unit vector in the direction of which the function f(x, y) = 6e^2 - x sin (y/3) (a) increases most rapidly, and (b) decreases most rapidly at the point (2, pi) A) (a) 1/2 Squareroot 7 (3 Squareroot 3 i - j), (b) 1/2 Squareroot 7 (-3 Squareroot 3 i + j) B) (a) 1/2 Squareroot 7 (3 Squareroot 3 i + j), (b) -1/2 Squareroot 7 (-3 Squareroot 3 i + j) C) (a) 1/2 Squareroot 7 (-3 Squareroot 3 i + j), (b) 1/2 Squareroot 7 (3 Squareroot 3 i - j) D) (a) -1/2 Squareroot 7 (3 Squareroot 3 i + j), (b) 1/2 Squareroot 7 (3 Squareroot 3 i + j) E) (a) 1/7 Squareroot 7 (3 Squareroot 3 i - j), (b) 1/7 Squareroot 7 (-3 Squareroot 3 i + j)Explanation / Answer
given f(x,y) ===> 6 e^(2 - x) sin (y/3)
f = {d/dx ( 6 e^(2 - x) sin (y/3) ) , d/dy ( 6 e^(2 - x) sin (y/3) ) }
===> { sin (y/3) 6 e^(2 - x ) d/dx ( 2 - x ) , 6 ( e^(2 - x) cos( y/3 ) d/dy ( y/3 ) }
=====> { - 6 e^(2 - x ) sin (y/3) , 2 e^(2 - x) cos( y/3 ) }
= { - 6 e^(2 - 2 ) sin (/3) , 2 e^(2 - 2) cos( /3 )} ...... at (2 , )
==> { - 3 sqrt( 3 ) , 1) ==> - 3 sqrt( 3 ) i + j
|| f || = (- 3 sqrt( 3 ))^2 + 1^2 ===>28 ==> 2 7
derivative in direction of fastest increase
u = {- 3 sqrt( 3 )/ 2 7 , 1/2 7} ==>1/ 2 7 ( - 3 sqrt( 3 ) i + j )
Answer: max df/dt = 28 and u = {- 3 sqrt( 3 )/ 2 7 , 1/2 7}
derivative in direction of fastest decrease is
- u ==> - {- 3 sqrt( 3 )/ 2 7 , 1/2 7} ==> { 3 sqrt( 3 )/ 2 7 , - 1/2 7} ==> 1/ 2 7 ( 3 sqrt( 3 ) i - j )
option C is correct
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.