Trapezoidal Rule: h = _______ y 0 = ____ y 1 = _______ y2=____ y 3 = ______ y 4
ID: 2869263 • Letter: T
Question
Trapezoidal Rule:
h = _______ y0 = ____ y1 = _______
y2=____ y3 = ______ y4 = _______
Show the Trapezoidal formula that you used to find this value.
Simpsons Rule: Use decimal values correct to six places for intermediate values and round
your final answer to four places.
h = _________ y0 = ______ y1 = ____________
y2 = _____ y3 = ___ y4 = ________________
4)Approximation using Simpsons rule
Show the formula used to find this value correct to 4 decimal places.
Which formula, Trapezoidal or Simpsons, gives the better approximation when using the same number of terms in the expansion? Why?
f(x)|(z-3)2 + 1]drExplanation / Answer
2)
Trapezoidal :
a = 0 , b = 2 , n = 4
h = (b - a)/n = (2 - 0)/4 = 0.5
So, the endpoints are : 0 , 1/2 , 1 , 3/2 , 2
y0 = f(0) =(0 - 3)^2 + 1 = 10
y1 = f(1/2) = (1/2 - 3)^2 + 1 = 29/4
y2 = f(1) = (1 - 3)^2 + 1 = 5
y3 = f(3/2) = (3/2 - 3)^2 + 1 = 13/4
y4 =(2 - 3)^2 + 1 = 2
------------------------------------------------------------------
3) Now, the formula goes :
delta(x)/2 * (y0 + 2y1 + 2y2 +2y3 + y4) --> formula used
(0.5)/2 * (10 + 2(29/4) + 2(5) + 2(13/4) + 2)
10.75
----------------------------------------------------------------------
The exact same values of h,y0,y1,y2,y3 and y4 hold even for the simpson rule
------------------------------------------------------------------------
4)
But for simpson's rule, we use the formula as
delta(x)/3 * (y0 + 4y1 + 2y2 +4y3 + y4) ---> formula used
(0.5)/3 * (10 + 4(29/4) + 2(5) + 4(13/4) + 2)
10.6667 ----> ANSWER
--------------------------------------------------------------------------------
5) Exact value
The function (x - 3)^2 + 1 can be simplified as x^2 - 6x + 10
Now, we need to integrate :
(int from 0 to 2) x^2 - 6x + 10
(1/3)x^3 - 3x^2 + 10x (over 0 to 2)
(1/3)*(2^3 - 0^3) - 3(2^2 - 0^2) + 10(2 - 0)
10.6667 ---> EXACT VALUE
The simpson rule gave us this exact same answer. So, the simpson rule gave us a better approximation
-----------------------------------------------------------------------------------------------------------------
6)
f(x) = x^3 - 8
a = -1 , b = 2 , n = 6
delta(x) = (b - a)/n --> (2 - (-1)) / 6 = 0.5
So, endpoints are : -1 , -0.5 , 0 , 0.5 , 1 , 1.5 and 2
f(-1) = (-1)^3 - 8 = -9
f(-0.5) = (-0.5)^3 - 8 = -8.125
f(0) = 0^3 - 8 = -8
f(0.5) = (0.5)^3 - 8 = -7.875
f(1) = 1^3 - 8 = -7
f(1.5) = (1.5)^3 - 8 = -4.625
f(2) = (2)^3 - 8 = 0
Now, using trapezoidal, add them likt this :
-9 + 2(-8.125) + 2(-8) + 2(-7.875) + 2(-7) + 2(-4.625) + 0
-80.25
Now, to this, multiply delta(x)/2 :
-80.25 * 0.5/2
-20.0625 ---> ANSWER
-----------------------------------------------------------------------------------------------
7) f(x) = sqrt(x) - 5
a = 0 , b = 3 , n = 6
delta(x) = (3 - 0)/6 = 0.5
f(0) = sqrt0 - 5 =-5
f(0.5) = sqrt(0.5) - 5 = -4.2928932188134525
f(1) = sqrt(1) - 5 = -4
f(1.5) = sqrt(1.5) - 5 = -3.775255128608411
f(2) = sqrt(2) - 5 = -3.585786437626905
f(2.5) = sqrt(2.5) - 5 = -3.4188611699158103
f(3) = sqrt(3) - 5 = -3.2679491924311227
Now, we add them likt this :
-5 + 4(-4.2928932188134525) + 2(-4) + 4(-3.775255128608411) + 2(-3.585786437626905) + 4(-3.4188611699158103) + -3.2679491924311227
-69.3875601370356279
And to this, multiply delta(x)/3 :
-69.3875601370356279 * (0.5) / 3
-11.56459335617260465 ------> ANSWER
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.