The weekly demand for the Pulsar 25 color LED television is represented by p , w
ID: 2857344 • Letter: T
Question
The weekly demand for the Pulsar 25 color LED television is represented by p, where p denotes the wholesale unit price in dollars and x denotes the quantity demanded.
The weekly total cost function associated with manufacturing the Pulsar 25 is given by C(x), where C(x) denotes the total cost incurred in producing x sets.
(a) Find the revenue function R.
R(x) =
Find the profit function P.
P(x) =
(b) Find the marginal cost function C '.
C '(x) =
Find the marginal revenue function R '.
R '(x) =
Find the marginal profit function P '.
P '(x) =
(c) Compute the following values. (Round your answers to two decimal places.)
Explanation / Answer
p = 610 - 0.05x , 0 <= x <= 12000
C(x) = 0.000002x3 - 0.03x2 + 510x + 74000
a) Revenue R(x) = p*x ==> R(x) = 610x - 0.05x2
Profit P(x) = Revenue R(x) - Cost C(x)
==> P(x) = 610x - 0.05x2 - (0.000002x3 - 0.03x2 + 510x + 74000)
==> P(x) = 610x - 0.05x2 - 0.000002x3 + 0.03x2 - 510x - 74000
==> P(x) = 100x - 0.02x2 - 0.000002x3 - 74000
b) Marginal cost C '(x) = 0.000002 (3) x3-1 - 0.03 (2)x2-1 + 510(1) + 0 since d/dx xn = n xn-1
==> C '(x) = 0.000006x2 - 0.06x + 510)
Marginal Revenue R '(x) = 610(1) - 0.05(2)x2-1
==> R '(x) = 610 - 0.1x
Marginal Profit P '(x) = 100(1) - 0.02(2)x2-1 - 0.000002(3)x3-1 - 0
==> P '(x) = 100 - 0.04x - 0.000006x2
c) C '(2700) = 0.000006(2700)2 - 0.06(2700) + 510 = 391.74
R '(2700) = 610 - 0.1(2700) = 340
P '(2700) = 100 - 0.04(2700) - 0.000006(2700)2 = -51.74
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.