Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

At what points does the curve r(t) = ti + (4t - t^2)k intersect the paraboloid z

ID: 2856150 • Letter: A

Question

At what points does the curve r(t) = ti + (4t - t^2)k intersect the paraboloid z = x^2 + y^2 (If an answer does not exist, enter DNE.) (x, y, z) = (smaller t-value) (x, y, z) = (larger t-value) Find the derivative, r'(t), of the vector function. r(t) = (t sin 3t , t^2, t cos 2t) r'(t) = Find the unit tangent vector T(t) at the point with the given value of the parameter t. r(t) = (2te^-t, 4 arctan t, 4e^t), t = 0 T(0) = Find the unit tangent vector T(t) at the point with the given value of the parameter t. r( t) = cos ti + 8tj + 3 si n 2tk, t = 0 T(0) =

Explanation / Answer

7)r(t)=ti +(4t-t2)k

x=t,y=0,z=(4t-t2)

z=x2+y2

4t-t2=t2+02

2t2-4t=0

2t(t-2)=0

t=0,t=2

answer is (x,y,z)=(0,0,0)

(x,y,z)=(2,0, 4(2) -22) =(2,0,4)

8)r(t)=<tsin3t ,t2 ,tcos2t>

product rule:(uv)'=u'v +uv'

r'(t)=<1sin3t +t(cos3t)*3 ,2t ,1cos2t+ t(-sin2t)*2>

r'(t)=<sin3t +3tcos3t ,2t ,cos2t -2tsin2t>