Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1.) Find the maximum and minimum values of F (x, y) = 2x + y on the ellipse x^2

ID: 2837054 • Letter: 1

Question

1.) Find the maximum and minimum values of F (x, y) = 2x + y on the ellipse x^2 + 16y^2 = 1

  A.) Maximum value: ...............................................?

  B.) Minimum value: ................................................?

2.) Find the maximum and minimum values of F (x, y, z) = 1x + 3y + 4z on the sphere

        x^2 + y^2 + z^2 = 1

A.) Maximum value:...................................................?

B.) Minimum value:......................................................?

3.) Find the Maximum and Minimum values of F (x, y) = 2x + y on the ellipse x^2 + 9y^2 = 1

    A.) Maximum value: ......................................................?

   B.) Minimum value: ..........................................................?

4.) Find the maximum and minimum values of F (x, y) = 13x^2 + 14y^2 on the disk

        D: x^2 + y^2 (Less than or equal to) 1

   A.) Maximum value: .....................................................?

    B.) Minimum value: .....................................................?

5.) Find the maximum and minimum values of the function F (x, y, z) = x + 2y subject to the constraints y^2 + z^2 = 100 and  x + y + z = 6.

   A.)  Maximum value is:...............................................? occuring at (....................... , ........................ , ...................)

   B.) Minimum values is: .................................................? occuring at (................ , .......................... , .....................)

Explanation / Answer

1.) Find the maximum and minimum values of F (x, y) = 2x + y on the ellipse x^2 + 16y^2 = 1

F = 2x+y , G = x^2 +16y^2 -1 = 0

use Lagrange's multipliers method

Fx = 2, Fy = 1

Gx = 2x , Gy = 32y


Fx/Gx = Fy/Gy

2/2x = 1/32y

32y = x

y = x/32

substitute y=x/32 in G

x^2 + 16(x/32)^2 = 1

x^2 + 16*x^2/32*32 = 1

x^2 + x^2/64 =1

65x^2 =64

x^2 = 64/65

x = 8/sqrt(65), -8/sqrt(65)

y = x/32 = 8/{32*sqrt(65)} = 1/4sqrt(65) ,

y= -8/32sqrt(65) = -1/4sqrt(65)

critical points (8/sqrt(65) , 1/4sqrt(65)),-(8/sqrt(65) , -1/4sqrt(65))


maximum is at (8/sqrt(65) , 1/4sqrt(65))

F(8/sqrt(65) , 1/4sqrt(65)) = 2*8/sqrt(65) + 1/4sqrt(65)

= 65/4sqrt(65)

maximum value = sqrt(65) /4


minimum is at(-8/sqrt(65) , -1/4sqrt(65))

F(-8/sqrt(65) , -1/4sqrt(65)) = 2*-8/sqrt(65) + (-1)/4sqrt(65)

= -65/4sqrt(65)

Minimum value is = -sqrt(65)/4


2.) Find the maximum and minimum values of F (x, y, z) = 1x + 3y + 4z on the sphere

x^2 + y^2 + z^2 = 1

F = x+3y+4z , P = x^2 +y^2 +z^2 -1 = 0

Fx = 1, Fy = 3,Fz = 4

Px = 2x, Py = 2y, Pz = 2z

use Lagrange's multipliers method

Fx/Px = Fy/Py = Fz/Pz

1/2x = 3/2y = 4/2z

1/2x = 3/2y , 1/2x = 4/2z

y = 3x, z = 4x

substitute these values in P

x^2 +(3x)^2 +(4x)^2 = 1

x^2 +9x^2+16x^2 = 1

x = 1/sqrt(26) , -1/sqrt(26)

y = 3x = 3/sqrt(26, -3/sqrt(26)

z = 4x = 4/sqrt(26), -4/sqrt(26)

critical points are (1/sqrt(26) , 3/sqrt(26) , 4/sqrt(26)) , (-1/sqrt(26) , -3/sqrt(26) , -4/sqrt(26))


Maximum is at (1/sqrt(26) , 3/sqrt(26) , 4/sqrt(26))

maximum value is F(1/sqrt(26) , 3/sqrt(26) , 4/sqrt(26)) = 1/sqrt(26) + 9/sqrt(26) + 16/sqrt(26)

= 26/sqrt(26) = sqrt(26)


Minimum is at (-1/sqrt(26) , -3/sqrt(26) , -4/sqrt(26))

Minimum value is F(-1/sqrt(26) , -3/sqrt(26) , -4/sqrt(26)) = -1/sqrt(26) - 9/sqrt(26) - 16/sqrt(26)

= -sqrt(26)


3.) Find the Maximum and Minimum values of F (x, y) = 2x + y on the ellipse x^2 + 9y^2 = 1

F = 2x+y , Q = x^2 +9y^2 -1 =0

Fx = 2, Fy = 1,

Qx = 2x, Qy = 18y

Lagrange's multipliers method

Fx/Qx = Fy/Qy

2/2x = 1/18y

x = 18y

y = x/18

substitute in Q

x^2 +9x^2 /(18*18) = 1

37x^2 = 36

x = 6/sqrt(37), -6/sqrt(37)

y = x/18 = 1/3sqrt(37) , -1/3sqrt(37)

Critical points = (6/sqrt(37) , 1/3sqrt(37)), (-6/sqrt(37) , -1/3sqrt(37))

Maximum value F(6/sqrt(37 , 3/sqrt(37)) = 2*6/sqrt(37) +1/3sqrt(37)

= 37/3sqrt(37) = sqrt(37) /3


Minimum value is F(-6/sqrt(37 , -1/3sqrt(37)) = -2*6/sqrt(37) -1/3sqrt(37)

= -37/3sqrt(37) = -sqrt(37) /3