Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

How to find the weighted deviation squared for returns and show process Covarian

ID: 2796458 • Letter: H

Question

How to find the weighted deviation squared for returns and show process Covarianceisa statistical measure of thedegree to which two or more series move together . Weighted Weighted deviation deviation Return Return Probability x Probability x squared for squared for Return on A Return on B Return on A Return on8 5.00% 0.000506 0.002162 7.20% 0.000015 0.000101 1.50% 0.000454 0.006427 on B Probability 25% 60% 15% onA Good OK Bad 15% 10% 5% 20% 12% -10% 3.75% 6.00% 0.75% -10.70% J0.000972 50.008691:-me 10.50% 3.1225 standard deviation of A= 3.1225% Standard deviation of B: 9.3226% 1110.301 ^2x 0.031225] ^20.70] ^2x [0.093226] ^2)+2(0.3)(0.7)("O·0027150"))

Explanation / Answer

State

Prob-ability   (a)

Rate of return on A (bA)

Rate

of return on B (bB)

(c1)=                (a) x (bA)

(c2)=                (a) x (bB)

Devn from expected return          (dA)=

bA-E(RA)

Devn from expected             return           (dB)=

bB-E(RB)

Squared deviation        (eA)= dA2

Squared deviation        (eB)= dB2

(f)=

(a)x(eA)

(f)=

(a)x(eB)

Good

0.25

0.15

0.2

0.0375

0.05

0.045

0.093

0.002025

0.008649

0.00050625

0.00216225

OK

0.6

0.10

0.12

0.06

0.072

-0.005

0.013

0.000025

0.000169

0.000015

0.0001014

Bad

0.15

0.05

-0.1

0.0075

-0.015

-0.055

-0.207

0.003025

0.042849

0.00045375

0.00642735

E(RA)

0.105

E(RB)

0.107

                      Variance

0.000975

0.008691

Standard Deviation

0.031225

0.093226

Explanation:

Expected return on A, E(RA)= 0.0375 + 0.06 + 0.0075 = 0.105

Expected return on B, E(RB)= 0.05 + 0.072 + ( -0.015) = 0.105

Deviation from expected return = Rate of return – Expected return

e.g.           0.15 – 0.105 = 0.045

Squared deviation = (Deviation from expected return)2

e.g.          0.045 x 0.045 = 0.002025

Variance for A = (Squared deviation x probability)

= 0.002025 x 0.25 + 0.000025 x 0.6 + 0.003025 x 0.15 = 0.00050625 + 0.000015 +0.00045375 = 0.000975

Standard Deviation = Variance = 0.000975 = 0.031225

Variance for B = (Squared deviation x probability)

= 0.008649x 0.25 +0.000169 x 0.6 +0.042849 x 0.15 = 0.00216225 + 0.0001014 + 0.00642735= 0.008691

Standard Deviation = Variance = 0.008691= 0.093226

State

Prob-ability   (a)

Rate of return on A (bA)

Rate

of return on B (bB)

(c1)=                (a) x (bA)

(c2)=                (a) x (bB)

Devn from expected return          (dA)=

bA-E(RA)

Devn from expected             return           (dB)=

bB-E(RB)

Squared deviation        (eA)= dA2

Squared deviation        (eB)= dB2

(f)=

(a)x(eA)

(f)=

(a)x(eB)

Good

0.25

0.15

0.2

0.0375

0.05

0.045

0.093

0.002025

0.008649

0.00050625

0.00216225

OK

0.6

0.10

0.12

0.06

0.072

-0.005

0.013

0.000025

0.000169

0.000015

0.0001014

Bad

0.15

0.05

-0.1

0.0075

-0.015

-0.055

-0.207

0.003025

0.042849

0.00045375

0.00642735

E(RA)

0.105

E(RB)

0.107

                      Variance

0.000975

0.008691

Standard Deviation

0.031225

0.093226

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote