Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1) A new machine tool costs $500,000, and has a useful life of 10 years. Its est

ID: 2563610 • Letter: 1

Question

1) A new machine tool costs $500,000, and has a useful life of 10 years. Its estimated salvage value at the end of year 10 is $50,000.

(a)    Determine the depreciation for years 1-10 using the straight-line method (with the assumed salvage value), and also using double declining balance.

(b)    Compute the present worth of the two series of depreciation amounts, assuming that you have a minimum acceptable rate of return of 12% per year.

(c)    What does your answer to part (b) above tell you about which depreciation method would be preferable for you? Explain.    

Explanation / Answer

1)(a)

Straight line depreciation = (Cost – Residual value)/Useful life

= ($ 500,000 - $ 50,000)/10

=$ 450,000/10 = $ 45,000 per year

Double decline depreciation = 2 × Straight-line depreciation rate × Book value at the beginning of the year = 2 x 1/10 x $ 500,000 = $ 2 x 0.1 x $ 500,000 = $ 100,000

Year

Beginning book value

Double decline depreciation

Ending book value

1

$                500,000.00

$                           100,000.00

$                       400,000.00

2

$                400,000.00

$                              80,000.00

$                       320,000.00

3

$                320,000.00

$                              64,000.00

$                       256,000.00

4

$                256,000.00

$                              51,200.00

$                       204,800.00

5

$                204,800.00

$                              40,960.00

$                       163,840.00

6

$                163,840.00

$                              32,768.00

$                       131,072.00

7

$                131,072.00

$                              26,214.40

$                       104,857.60

8

$                104,857.60

$                              20,971.52

$                          83,886.08

9

$                   83,886.08

$                              16,777.22

$                          67,108.86

10

$                   67,108.86

$                              17,108.86

$                          50,000.00

b.

Straight line depreciation

Year(n)

Depreciation(D)

PV factor F= 1/(1+i)n

Present Worth =F x D

1

$                         45,000

1/(1+0.12)1

0.892857143

$                    40,178.57

2

$                         45,000

1/(1+0.12)2

0.797193878

$                    35,873.72

3

$                         45,000

1/(1+0.12)3

0.797193878

$                    35,873.72

4

$                         45,000

1/(1+0.12)4

0.711780248

$                    32,030.11

5

$                         45,000

1/(1+0.12)5

0.635518078

$                    28,598.31

6

$                         45,000

1/(1+0.12)6

0.567426856

$                    25,534.21

7

$                         45,000

1/(1+0.12)7

0.506631121

$                    22,798.40

8

$                         45,000

1/(1+0.12)8

0.452349215

$                    20,355.71

9

$                         45,000

1/(1+0.12)9

0.403883228

$                    18,174.75

10

$                         45,000

1/(1+0.12)10

0.360610025

$                    16,227.45

Total PW

$                 275,644.97

Double decline depreciation

Year(n)

Depreciation(D)

PV factor F= 1/(1+i)n

Present Worth =F x D

1

$                100,000.00

1/(1+0.12)1

0.892857143

$                    89,285.71

2

$                   80,000.00

1/(1+0.12)2

0.797193878

$                    63,775.51

3

$                   64,000.00

1/(1+0.12)3

0.797193878

$                    51,020.41

4

$                   51,200.00

1/(1+0.12)4

0.711780248

$                    36,443.15

5

$                   40,960.00

1/(1+0.12)5

0.635518078

$                    26,030.82

6

$                   32,768.00

1/(1+0.12)6

0.567426856

$                    18,593.44

7

$                   26,214.40

1/(1+0.12)7

0.506631121

$                    13,281.03

8

$                   20,971.52

1/(1+0.12)8

0.452349215

$                      9,486.45

9

$                   16,777.22

1/(1+0.12)9

0.403883228

$                     6,776.04

10

$                   17,108.86

1/(1+0.12)10

0.360610025

$                      6,169.63

Total PW

$                 320,862.19

(c) Straight line depreciation method is preferable as the present worth of this method is less than double decline method.

Year

Beginning book value

Double decline depreciation

Ending book value

1

$                500,000.00

$                           100,000.00

$                       400,000.00

2

$                400,000.00

$                              80,000.00

$                       320,000.00

3

$                320,000.00

$                              64,000.00

$                       256,000.00

4

$                256,000.00

$                              51,200.00

$                       204,800.00

5

$                204,800.00

$                              40,960.00

$                       163,840.00

6

$                163,840.00

$                              32,768.00

$                       131,072.00

7

$                131,072.00

$                              26,214.40

$                       104,857.60

8

$                104,857.60

$                              20,971.52

$                          83,886.08

9

$                   83,886.08

$                              16,777.22

$                          67,108.86

10

$                   67,108.86

$                              17,108.86

$                          50,000.00