USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!! USE A COMPUTER PROGRA
ID: 2248179 • Letter: U
Question
USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!
USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!
USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!
USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!
c. Design and simulate (perform both DC and AC malysis) a CC amplifier, based on the Fig. 2.3 configuration with the characteristics/specs given below: try to use resistor values available within your lab kit (or as close as possible). Compare your design with the simulation results (preferably in a table). PLEASE NOTE that the objective is NOT to design a circuit that matches exactly ALL the specifications given below, but rather to develop what you consider an "effective" design that will meet the specifications within a reasonable range; consider the voltage gain and a maximum output signal swing as your two most important design constraints/goals. = 150; VBE Vo55 Volts: RL-IKO; c In simulations use C-1 F. 0.7 Volts i. ii. iii. 3.4 Volts; 1 0.8 mA; A-0.95 OUT Figure 2.3Explanation / Answer
%elec05e06.m
clear, clf
fs1=6e3; fp1=10e3; fp2=12e3; fs2=15e3; Rp=3; As=25; fp=sqrt(fp1*fp2);
ws1=2*pi*fs1; wp1=2*pi*fp1; wp2=2*pi*fp2; ws2=2*pi*fs2;
format short e
[N,wpc]= cheb1ord([wp1 wp2],[ws1 ws2],Rp,As,'s');
[B,A]= cheby1(N,Rp,wpc,'s');
f=logspace(-1,1,600)*fp; Gw=freqs(B,A,2*pi*f); % Frequency response
subplot(221), semilogx(f,20*log10(abs(Gw))), hold on
plot([f(1) fp2],[-Rp -Rp],'k:', [f(1) fs2],[-As -As],'k:')
plot([fs1 fs1],[-50 -As],'k:', [fp1 fp1],[-50 -Rp],'k:', [fp2 fp2],[-50 -Rp],'k:', [fs2 fs2],[-50 -As],'k:')
axis([f([1 end]) -50 5])
[SOS,K]= tf2sos(B,A);
Ns=size(SOS,1); % Number of sections
Gm=K^(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
KC=2;
for n=1:Ns
B2=Gm; A2 = AAc(n,2); A3 = AAc(n,3); C3=1e-8; C4=1e-8;
subplot(222+n), BPF_MFBa_design(B2,A2,A3,C3,C4,KC);
%Gs, B, A
end
set(gcf,'Color','white')
% This yields
%R1= 11241, R2= 40, R5= 46095, C3=1.000e-008, C4=1.000e-008
%R1= 11241, R2= 46, R5= 53119, C3=1.000e-008, C4=1.000e-008
clc;
clear all;close all;
options = odeset('RelTol',1e-9);
Pp= 400e-3;
Ps = 10e-6;
L= 7;
% First forward Run......
[xf1,yf1] = ode45(@gain_ode_for,[0 L],[Pp Ps zeros(1,301)]);
figure(1)
plot(xf1,yf1(:,1));
title('Pump Power in first run');
figure(2)
plot(xf1,yf1(:,2));
title('signal Power in first run');
db = 10*log10(yf1(:,2)/10e-6);
figure(4)
plot(xf1,db);
title('gain in first run');
printSol(xf1,yf1,9);
m=size(yf1,1);
d = 1520e-9:0.2e-9:1580e-9;
figure(5)
plot(d,yf1(m,3:303))
title('Forward ASE in first run');
% First backward Run......
[xb1,yb1] = ode45(@gain_ode,[L 0],[yf1(m,:) zeros(1,301)]);
figure(6)
plot(xb1,yb1(:,1));
title('Pump power in first backward run');
figure(7)
plot(xb1,yb1(:,2));
title('Signal power in first backward run');
figure(3)
plot(xb1,yb1(:,3));
db = 10*log10(yb1(:,2)/10e-6);
figure(8)
plot(xb1,db);
title('Gain in first backward run');
printSol(xb1,yb1,20);
[m1 n1]=size(yb1);
figure(9)
plot(d,yb1(m1,3:303))
title('Forward ase in first backward run');
figure(10)
plot(d,abs(yb1(m1,304:604)))
title('Bacward ASE in first backward run');
% Second Forward run
[xf2,yf2] = ode45(@gain_ode,[0 L],[Pp Ps zeros(1,301) (yb1(m1,304:604))]);
figure(11)
plot(xf2,yf2(:,1));
title('Pump power in second forward run');
figure(12)
plot(xf2,yf2(:,2));
title('Signal power in second forward run');
%figure(3)
% plot(xf1,yf1(:,3));
db = 10*log10(yf2(:,2)/10e-6);
figure(14)
plot(xf2,db);
title('Gain in second forward run');
printSol(xf2,yf2,9);
m3=size(yf2,1);
figure(19)
plot(d,yf2(m3,3:303))
title('Forward ASE in second forward run');
figure(20)
plot(d,yf2(m3,304:604))
title('BAckward ase in second forward run');
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.