A transverse periodic wave is represented by the equation y(x, t) = -1.50 cm sin
ID: 2119694 • Letter: A
Question
A transverse periodic wave is represented by the equation y(x, t) = -1.50 cm sin(1,500 rad/s t - 10.0 m-1 x). Another transverse wave is represented by the equation y(x, t) = +1.50 cm sin(1,500 rad/s t + 10.0 m-1 x). What is the equation that represents the superposition of the two waves?
y(x, t) = +3.0 cm cos(1,500 rad/s t) sin(10.0 m-1 x)
y(x, t) = 3.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
y(x, t) = 3.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
y(x, t) = 6.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
y(x, t) = 3.0 cm sin(1,500 rad/s t) cos(10.0 m-1 x)
A)
y(x, t) = +3.0 cm cos(1,500 rad/s t) sin(10.0 m-1 x)
B)
y(x, t) = 3.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
C)
y(x, t) = 3.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
D)
y(x, t) = 6.0 cm sin(1,500 rad/s t - 10.0 m-1 x)
E)
y(x, t) = 3.0 cm sin(1,500 rad/s t) cos(10.0 m-1 x)
Explanation / Answer
ans E
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.