Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

ee153_lab4_exp2_induction_motor_squirrel_cage_init.m f=60; % electrical (synchro

ID: 2084224 • Letter: E

Question

ee153_lab4_exp2_induction_motor_squirrel_cage_init.m

f=60;         % electrical (synchronous) angular frequency in Hz

Rs=1.77;

Rr=1.34;

Xls=5.25;

Xlr=4.57;

Xm=139;

Jeq=0.025;

p=4;

% Steady State Operating Condition

VLLrms = 460;    % phase-a voltage is at its positive peak at t=0

s      = 0.0172; % slip = wm/wsyn where wm - rotor speed in electrical rad/s

Wsyn=2*pi*f;                                            % synchronous speed in electrical rad/s

Wm=(1-s)*Wsyn;                                          % rotor speed in electrical rad/s

% Phasor Calculations

Va = VLLrms * sqrt(2)/ sqrt(3);                         % Va phasor

Zrotor = j*Xlr + Rr/s;                                  % Equivalent Rotor Branch Impedance

Zm = j*Xm;                                              % Magnetizing Impedance

Zeq = (Rs + j*Xls) + (Zm * Zrotor) / (Zm + Zrotor);    % Equivalent Impedance

Ia = Va / Zeq;                                          % Ia phasor

Ema = Va - (Rs + j*Xls) * Ia;                           % Voltage across the magnetizing branch

Iraprime = Ema / Zrotor;                                % Rotor branch current phasor

% Space Vectors at time t=0 with stator a-axis as the reference

Vs_0 = (3/2) * Va;                                      % Vs(0) space vector

Is_0 = (3/2) * Ia;                                      % Is(0) space vector

Theta_Is_0 = angle(Is_0);                               % angle of Is(0) space vector

Ir_0 = (-1) * (3/2) * Iraprime;                         % Ir(0) space vector; notice factor of (-1); see Fig. 3-11

Theta_Ir_0 = angle(Ir_0);                               % angle of Ir(0) space vector

% We will assume that at t=0, d-axis is aligned to the stator a-axis. Therefore, Theta_da_0=0

Theta_da_0 = 0;

Isd_0 = sqrt(2/3) * abs(Is_0) * cos(Theta_Is_0 - Theta_da_0); % Eq. 3-64

Isq_0 = sqrt(2/3) * abs(Is_0) * sin(Theta_Is_0 - Theta_da_0); % Eq. 3-65

Ird_0 = sqrt(2/3) * abs(Ir_0) * cos(Theta_Ir_0 - Theta_da_0);

Irq_0 = sqrt(2/3) * abs(Ir_0) * sin(Theta_Ir_0 - Theta_da_0);

% Calculation of machine inductances

Ls = (Xls + Xm) / (2*pi*f);

Lm = Xm / (2*pi*f);

Lr = (Xlr + Xm) / (2*pi*f);

% Inductance matrix M in Eq. 3-61

M = [Ls 0 Lm 0 ;...

     0 Ls 0 Lm;...

     Lm 0 Lr 0 ;...

     0 Lm 0 Lr];

% Flux Linkages

fl_dq_0 = M * [Isd_0; Isq_0; Ird_0; Irq_0];    % dq-winding fluxes in vector form, Eq. 3-61

fl_sd_0 = fl_dq_0(1)

fl_sq_0 = fl_dq_0(2)       

fl_rd_0 = fl_dq_0(3)

fl_rq_0 = fl_dq_0(4)

% Electromagnetic Torque, which equals Load Torque in Initial Steady State

Tem_0 = (p/2) * Lm * (Isq_0 * Ird_0 - Isd_0 * Irq_0)    % Eq. 3-47

TL_0 = Tem_0

% Wmech = rotor speed in actual rad/s

Wmech_0=(2/p)*Wm %Eq. 3-34

1. Use the Simulink's Step block to simulate a suddenly changed line-to-line voltage. Note that the voltage must have an initial value of vLLrms set up in the initialization code. Set the final value to 3/4*vLLrms at time 0.1 s. Keep the Load Torque constant at value TL o 2. Provide the outputs for Tem and armech (convert to rpm). 3. Repeat 1. for the change of line-to-line voltage to 1/2 vLLrms 4. Discuss the observations.

Explanation / Answer

For the given VLLrms = 460 output --> fl_sd_0 =  0.017372 fl_sq_0 = -1.1951 fl_rd_0 = -0.12370 fl_rq_0 = -1.1363 Tem_0 =  12.644 rad/sec TL_0 =  12.644 Wmech_0 =  185.25 rad/sec

Tem_0(rpm) = Tem_0(rad/sec)*(60/2pi) = 12.644*(60/2pi) = 120.741 rpm Wmech_0(rpm) = Wmech_0(rad/sec)*(60/2pi) = 185.25*(60/2pi) = 1769 rpm

For VLLrms = (3/4)*460 = 345 output--> fl_sd_0 =  0.013029 fl_sq_0 = -0.89632 fl_rd_0 = -0.092777 fl_rq_0 = -0.85223 Tem_0 =  7.1125 TL_0 =  7.1125 Wmech_0 =  185.25

Tem_0(rpm) = Tem_0(rad/sec)*(60/2pi) = 7.1125*(60/2pi) = 67.92 rpm Wmech_0(rpm) = Wmech_0(rad/sec)*(60/2pi) = 185.25*(60/2pi) = 1769 rpm

For VLLrms = (1/2)*460 = 230 output--> fl_sd_0 =  0.0086862 fl_sq_0 = -0.59755 fl_rd_0 = -0.061851 fl_rq_0 = -0.56816 Tem_0 =  3.1611 TL_0 =  3.1611 Wmech_0 =  185.25

Tem_0(rpm) = Tem_0(rad/sec)*(60/2pi) = 3.1611*(60/2pi) = 30.186 rpm Wmech_0(rpm) = Wmech_0(rad/sec)*(60/2pi) = 185.25*(60/2pi) = 1769 rpm

In the given condition slip is fixed , so Wmech only depends on the (poles, frequency,slip) ,it is constant irrespective of voltage changes ,(eventhough it is not the case in real time)

Tem depends on voltage input , it is proportional to (v)2 ,Tem decreases with VLLrms.