Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Two identical containers are open at the top and are connected at the bottom via

ID: 2042001 • Letter: T

Question

Two identical containers are open at the top and are connected at the bottom via a tube of negligible volume and a valve that is initially closed. Both containers are filled initially to the same height of h = 3.00 , one with oil, and the other with mercury, as the drawing below indicates. The valve is then opened. Oil and mercury have densities of 6,000 kg/m3 and 13,600 kg/m3 , respectively. The oil and mercury do not mix.

Determine the fluid level in the left container when equilibrium is established again.

Explanation / Answer

Given data Initial height in the cointainer, h = 3.0 m Density of oil, oil = 6000 kg/m3 Initial height in the cointainer, h = 3.0 m Density of mercury, Hg = 13600 kg/m3 Let the Hg move into the left contaner to a height of y The height of Hg on the right side, = (h - y) m Total pressure on the left side,                                 p1= oilgh +Hggy                                     = (6000 kg/m3)(9.8 m/s2) (3.0 m) + (13600 kg/m3)(9.8 m/s2) (y)                                     = 1.764*105 Pa + 1.3328*105 Pa y Pressure on the right side,                                p2 = Hgg(h-y)
                                    =(13600 kg/m3)(9.8 m/s2) (3.0 m - y)                                     = 3.998*105 Pa - 1.3328*105 Pa y ----------------------------------------------------------------------------------------------------------------- Equating the rightand left side pressures, and cancelling g. 1.764*105 Pa + 1.3328*105 Pa y = 3.998*105 Pa - 1.3328*105 Pa y                          2.665*105 Pa (y) = 2.234*105 Pa Then the height of mercury in left side is                                               y = 0.838 m                                Therefore the total height of the fluid level on the left side,                                             H = 3.0 +0.838
                                                 = 3.838 m Let the Hg move into the left contaner to a height of y The height of Hg on the right side, = (h - y) m Total pressure on the left side,                                 p1= oilgh +Hggy                                     = (6000 kg/m3)(9.8 m/s2) (3.0 m) + (13600 kg/m3)(9.8 m/s2) (y)                                     = 1.764*105 Pa + 1.3328*105 Pa y Pressure on the right side,                                     = (6000 kg/m3)(9.8 m/s2) (3.0 m) + (13600 kg/m3)(9.8 m/s2) (y)                                     = 1.764*105 Pa + 1.3328*105 Pa y Pressure on the right side,                                p2 = Hgg(h-y)
                                    =(13600 kg/m3)(9.8 m/s2) (3.0 m - y)                                     = 3.998*105 Pa - 1.3328*105 Pa y ----------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------- Equating the rightand left side pressures, and cancelling g. 1.764*105 Pa + 1.3328*105 Pa y = 3.998*105 Pa - 1.3328*105 Pa y                          2.665*105 Pa (y) = 2.234*105 Pa Then the height of mercury in left side is                                               y = 0.838 m                                1.764*105 Pa + 1.3328*105 Pa y = 3.998*105 Pa - 1.3328*105 Pa y                          2.665*105 Pa (y) = 2.234*105 Pa Then the height of mercury in left side is                                               y = 0.838 m                                Therefore the total height of the fluid level on the left side,                                             H = 3.0 +0.838
                                                 = 3.838 m
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote