Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A hollow sphere of radius 0.35 m, with rotational inertia I = 0.036 kg m2 about

ID: 2006994 • Letter: A

Question

A hollow sphere of radius 0.35 m, with rotational inertia I = 0.036 kg m2 about a line through its center of mass, rolls without slipping up a surface inclined at 37° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 75 J.
(a) How much of this initial kinetic energy is rotational?
____30_J

(b) What is the speed of the center of mass of the sphere at the initial position?
___ m/s
Now, the sphere moves 1.0 m up the incline from its initial position.
(c) What is its total kinetic energy now?
__ J

(d) What is the speed of its center of mass now?
__m/s

Explanation / Answer

Given that the radius of the hallow sphere is R = 0.35 m           The moment of inertia is I = 0.036 kg .m2           The angle of inclination is = 370            The initial kinetic energy is K = 75 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  75 J = (1/2)I( U /R)2 + (1/2)mU2                                                  75 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          75 J = (1/3)m U2 + (1/2)mU2                                                  75 J = (1/3)m U2 + (1/2)mU2                                                      75 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 75 J / 5                                                          = 90J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 75 J - ( 90 J /2)                                                                               = 30 J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 0.440 kg              From the equation (1) mU2 = 90 J                                                        U = ( 90 J / m )1/2                                                            = 9.46 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 75 J +(0 - mgh)                                                          = 75 J - mg(1.0m*sin)                                                          = 40 - 2.59                                                          = 37.40   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s           The moment of inertia is I = 0.036 kg .m2           The angle of inclination is = 370            The initial kinetic energy is K = 75 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  75 J = (1/2)I( U /R)2 + (1/2)mU2                                                  75 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          75 J = (1/3)m U2 + (1/2)mU2                                                  75 J = (1/3)m U2 + (1/2)mU2                                                      75 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 75 J / 5                                                          = 90J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 75 J - ( 90 J /2)                                                                               = 30 J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 0.440 kg              From the equation (1) mU2 = 90 J                                                        U = ( 90 J / m )1/2                                                            = 9.46 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 75 J +(0 - mgh)                                                          = 75 J - mg(1.0m*sin)                                                          = 40 - 2.59                                                          = 37.40   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s           The angle of inclination is = 370            The initial kinetic energy is K = 75 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  75 J = (1/2)I( U /R)2 + (1/2)mU2                                                  75 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          75 J = (1/3)m U2 + (1/2)mU2                                                  75 J = (1/3)m U2 + (1/2)mU2                                                      75 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 75 J / 5                                                          = 90J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 75 J - ( 90 J /2)                                                                               = 30 J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 0.440 kg              From the equation (1) mU2 = 90 J                                                        U = ( 90 J / m )1/2                                                            = 9.46 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 75 J +(0 - mgh)                                                          = 75 J - mg(1.0m*sin)                                                          = 40 - 2.59                                                          = 37.40   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s                                                  75 J = (1/3)m U2 + (1/2)mU2                                                      75 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 75 J / 5                                                          = 90J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 75 J - ( 90 J /2)                                                                               = 30 J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 0.440 kg              From the equation (1) mU2 = 90 J                                                        U = ( 90 J / m )1/2                                                            = 9.46 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 75 J +(0 - mgh)                                                          = 75 J - mg(1.0m*sin)                                                          = 40 - 2.59                                                          = 37.40   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s                                                            = 9.46 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 75 J +(0 - mgh)                                                          = 75 J - mg(1.0m*sin)                                                          = 40 - 2.59                                                          = 37.40   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 10.09 m/s                                                                                           = 10.09 m/s
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote