\"margin:0px;padding:0px;border:0px;width:auto;height:1px;text-align:left;text-t
ID: 1858745 • Letter: #
Question
"margin:0px;padding:0px;border:0px;width:auto;height:1px;text-align:left;text-transform:none;line-height:normal;text-indent:0px;letter-spacing:normal;word-spacing:normal;">
"border: 0px; height: 0px; margin: 0px; padding: 0px; width: 707px">
Derive this equation
"math">
"width:20.97em;height:0px;font-size:120%;">
"mrow">
"width:1.19em;height:0px;">
"mi">E
"mrow">
"mi">T
"texatom">
"width:.98em;height:0px;">
"mo">,
"mrow">
"mi">C
class="mo">=
"mi">M
"mo">/
(
"mi">K
(
"mi">w
"width:1.05em;height:0px;">
"mi">h
"mrow">
"mn">3
"texatom">
"mo">/
12
"mo">)
(
"mn">1
"mo"> ±
"mi">a
"msubsup">
"mo">)
"mrow">
"mn">2
),
class="mi">a
"mo">=
"mo">(
2
"texatom">
"mo">/
h
"mo">)
(
"mi">b
"mo">/
k
"mo">)
. Where this equation reduces to the
second., Im not sure if this second equation will help or
not.
"math">
"width:10.2em;height:0px;font-size:120%;">
"mrow">
"width:1.26em;height:0px;">
"mi">E
"mrow">
"mi">T
"texatom">
"width:.91em;height:0px;">
"mo">,
"mrow">
"mi">C
class="mo">=
"mi">M
"mo">/
(
"mi">K
(
"mi">w
"width:1.05em;height:0px;">
"mi">h
"mrow">
"mn">3
"texatom">
"mo">/
12
"mo">)
"font-family:'Times New Roman', serif;font-size:small;">
"color:rgb(31,73,125);font-family:Calibri, sans-serif;font-size:x-small;">
You need to find compressive and
tensile moduli. You
have a problem, you set boundary conditions and you solve it
using beam theory. I am confused on how to derive this equation.
could someone please help me.
"margin:0px;padding:0px;border:0px;width:auto;text-align:left;text-transform:none;line-height:normal;text-indent:0px;letter-spacing:normal;font-family:sans-serif;font-size:40px;font-style:normal;font-weight:normal;word-spacing:normal;">
î ¿ ¾
Explanation / Answer
The question is not clear. THANK YOU
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.