Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

\"margin:0px;padding:0px;border:0px;width:auto;height:1px;text-align:left;text-t

ID: 1858745 • Letter: #

Question

"margin:0px;padding:0px;border:0px;width:auto;height:1px;text-align:left;text-transform:none;line-height:normal;text-indent:0px;letter-spacing:normal;word-spacing:normal;">


"border: 0px; height: 0px; margin: 0px; padding: 0px; width: 707px">


Derive this equation

"math">

"width:20.97em;height:0px;font-size:120%;">

"mrow">

"width:1.19em;height:0px;">

"mi">E

"mrow">

"mi">T

"texatom">

"width:.98em;height:0px;">

"mo">,

"mrow">

"mi">C

class="mo">=

"mi">M

"mo">/

(

"mi">K

(

"mi">w

"width:1.05em;height:0px;">

"mi">h

"mrow">

"mn">3

"texatom">

"mo">/

12

"mo">)

(

"mn">1

"mo"> ±

"mi">a

"msubsup">

"mo">)

"mrow">

"mn">2

),

class="mi">a

"mo">=

"mo">(

2

"texatom">

"mo">/

h

"mo">)

(

"mi">b

"mo">/

k

"mo">)

. Where this equation reduces to the

second., Im not sure if this second equation will help or

not.

"math">

"width:10.2em;height:0px;font-size:120%;">

"mrow">

"width:1.26em;height:0px;">

"mi">E

"mrow">

"mi">T

"texatom">

"width:.91em;height:0px;">

"mo">,

"mrow">

"mi">C

class="mo">=

"mi">M

"mo">/

(

"mi">K

(

"mi">w

"width:1.05em;height:0px;">

"mi">h

"mrow">

"mn">3

"texatom">

"mo">/

12

"mo">)

"font-family:'Times New Roman', serif;font-size:small;">

"color:rgb(31,73,125);font-family:Calibri, sans-serif;font-size:x-small;">

You need to find compressive and

tensile moduli. You

have a problem, you set boundary conditions and you solve it

using beam theory. I am confused on how to derive this equation.

could someone please help me.

"margin:0px;padding:0px;border:0px;width:auto;text-align:left;text-transform:none;line-height:normal;text-indent:0px;letter-spacing:normal;font-family:sans-serif;font-size:40px;font-style:normal;font-weight:normal;word-spacing:normal;">

î ¿ ¾


Explanation / Answer

The question is not clear. THANK YOU