The state of stress at a critical point in a steel member (E=200 GPa, G=79 GPa,
ID: 1856191 • Letter: T
Question
The state of stress at a critical point in a steel member (E=200 GPa, G=79 GPa, ?y=250GPa ) is ?xx=?30MPa , ?yy=90Mpa , ?xy=?40MPa , and all other stress components are zero. Determine the safety factor of using a) the maximum shearing stress criterion (Tresca) and (b) the maximum energy of distortion criterion (von Mises).Explanation / Answer
a) maximum shearing stress criterion= sigma 1,2= (?yy+ ?xx)/ 2 +- root[( sigma x -sigma yy)/2 +?xy^2]........... putting all values........simga 1=156.47 and sigma 2 = 96.47......................... now fos= max of ( sigma1 /2 , sigma 2/2 , 1-2/2 = 78.235now, fos= (?y/2)/ 78.235=1.59...........as...........?max >= ? limit / 2 ?max is the greatest of abs (?12, ?23, ?13) where: ....... ?12 = (?1 - ?2) / 2; ?23 = (?2 - ?3 ) / 2; ?13 = (?1 - ?3) / 2........... ?1, ?2, ?3 are the principal stresses in descending order. The Factor of safety (FOS) is given by: FOS = ? limit / (2 * ?max )............. b) maximum energy of distortion criterion = (?y/fos)^2 = sigma 1 ^2 sigma 2^2 -sigma 1 * sigma 2............................then fos= 250/136.728= 1.82.................
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.