Homework 1 Prove the following theorems algebraically: a) X(X\' + Y) = XY b) X +
ID: 1846213 • Letter: H
Question
Homework 1
Prove the following theorems algebraically:
a) X(X' + Y) = XY
b) X + XY = X
c) XY + XY' = X
d) (A + B)(A + B') = A
Problem 2
Multiply out and simplify to obtain a sum of products:
a) (A + B)(C + B)(D' + B)(ACD' + E)
b) (A' + B + C')(A' + C' + D)(B' + D')
Problem 3
Factor each of the following expressions to obtain a product of sums:
a) AB + C'D'
b) XYZ + W'Z + XQ'Z
Problem 4
Simplify each of the following expressions by applying one of the theorems. State the theorem used:
a) (A' + B' + C)(A' + B' + C)'
b) (A'BF + CD')(A'BF + CEG)
c) A' (B + C)(D'E + F)' + (D'E + F)
Problem 5
Prove the following equations using truth tables:
a) (X + Y)(X' + Z) = XZ + X'Y
b) (X + Y)(Y + Z)(X' + Z) = (X + Y)(X' + Z)
c) W'XY + WZ = (W' + Z)(W + XY)
Explanation / Answer
2. Problem 2
a) (A + B)(C + B)(D' + B)(ACD' + E)
(AC+AB+BC+B)(ACD'+D'E+ABCD'+BE)
=(AC+(A+C+1)B)(ACD'+D'E+ABCD'+BE)
=(AC+B)(ACD'+D'E+ABCD'+BE)
=ACD'+ACD'E+ABCD'+ACBE+ABCD'+BD'E+ABCD'+BE
=ACD'(1+E+B+B+B)+BE(1+D'+AC)
=ACD'+BE
b) (A' + B + C')(A' + C' + D)(B' + D')
(A'+B+C')(A'B'+A'D'+B'C'+C'D'+DB'+DD')
=(A'+B+C')(A'B'+A'D'+B'C'+C'D'+DB')
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.