Three Boxes are located on three inclined surfaces with the friction. The fricti
ID: 1836651 • Letter: T
Question
Three Boxes are located on three inclined surfaces with the friction. The friction coefficients are identical. Angles of inclined surfaces with the horizontal direction Theta_1 Theta_2, and Theta_3 are different. On the inclined surface with the angle Theta_1, the acceleration of the box is a_1. On the incline surface with the angle Theta_2, the acceleration is a_2. The motion on the third surface happens without any acceleration. Find an expression for third angle in terms of Theta_1, a_1, Theta a_2.Explanation / Answer
Here,
theta1 , theta2 , theta3
for the angle theta1
a1 = g * sin(theta1) - u * g * cos(theta1) ----(1)
for the angle theta2
a2 = g * sin(theta2) - u * g * cos(theta2)
for the angle theta3
0 = g * sin(theta3) - u * g * cos(theta3)
tan(theta3) = u
from 1
u = (g * sin(theta1) - a1 )/(g * cos(theta1))
putting in the equation
tan(theta3) = (g * sin(theta1) - a1 )/(g * cos(theta1))
theta3 = arctan((g * sin(theta1) - a1 )/(g * cos(theta1)))
the expression for the third angle is arctan((g * sin(theta1) - a1 )/(g * cos(theta1)))
from 2
u = (g * sin(theta2) - a2 )/(g * cos(theta2))
putting in the equation
tan(theta3) = (g * sin(theta2) - a2 )/(g * cos(theta2))
theta3 = arctan((g * sin(theta1) - a2 )/(g * cos(theta2)))
the expression for the third angle is arctan((g * sin(theta2) - a2 )/(g * cos(theta2)))
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.