1- find the inverse Laplace transforms of the following functions: A- f1(s)= 50(
ID: 1796706 • Letter: 1
Question
1- find the inverse Laplace transforms of the following functions:
A- f1(s)= 50(s+10)/((s+5)(s+20))
b- f2(s)= (2s^2)((s+200)(s+500))
2- find the inverse Laplace transforms of the following functions and sketch their waveforms for >0 :
a- f1(s)= ((s+))/(s(s^2+^2))
b- f2(s)=(s(s+))/((s^2+^2))
3-find the inverse Laplace transforms of the following functions :
a- f1(s)= ^2/(s^2(s+))
b- f2(s)=^2/(s(s+)^2)
4-find the inverse Laplace transforms of the following functions :
a-f1(s)= 600/((s+10)(s+20)(s+40))
b- f2(s)= (6(s+10))/((s+5)(s+20))
5-find the inverse Laplace transforms of the following functions :
a- f1(s)= 16s/((s+2)(s^2+12s+13))
b- f2(s)= (4(s^2+4))/(s(s^2+16))
Explanation / Answer
1- find the inverse Laplace transforms of the following functions:
A- f1(s)= 50(s+10)/((s+5)(s+20))
=50*(2/(3 (s+20))+1/(3 (s+5)))
now taking inverse laplace we get
= 50/3 e^(-20 t) (e^(15 t)+2)
b- f2(s)= (2s^2)/((s+200)(s+500))
= 2+800/(3 (200+s))-5000/(3 (500+s))
inverse laplace is
= 2 (delta(t)-(2500 e^(-500 t))/3+(400 e^(-200 t))/3)
2- find the inverse Laplace transforms of the following functions and sketch their waveforms for >0 :
= sin(beta t)-cos(beta t)+1
b- f2(s)=(s(s+))/((s^2+^2))
3-find the inverse Laplace transforms of the following functions :
= alpha^2 (-1/alpha^2+e^(alpha (-t))/alpha^2+t/alpha)
b- f2(s)=^2/(s(s+)^2)
4-find the inverse Laplace transforms of the following functions :
= e^(-40 t) (e^(10 t)-1)^2 (2 e^(10 t)+1)
b- f2(s)= (6(s+10))/((s+5)(s+20))
5-find the inverse Laplace transforms of the following functions :
= 16 ((2 e^(-2 t))/7-(-e^((-6-sqrt(23)) t)+2 sqrt(23) e^((-6-sqrt(23)) t)+e^((sqrt(23)-6) t)+2 sqrt(23) e^((sqrt(23)-6) t))/(14 sqrt(23)))
b- f2(s)= (4(s^2+4))/(s(s^2+16))
= 4 (3/4 cos(4 t)+1/4)
If you seem to not get any answer feel free to contact I'll tell how to arrive at the result
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.