Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The closed Gaussian surface shown at right consists of a hemispherical surface a

ID: 1586815 • Letter: T

Question

The closed Gaussian surface shown at right consists of a hemispherical surface and a flat plane. A point charge +q is outside the surface, and no charge is enclosed by the surface. What is the flux through the entire closed surface Explain. Let phi_L represent the flux through the flat left-hand portion of the surface. Write an expression in terms of 4,, for the flux through the curved portion of the surface, phi_C. Suppose that the curved portion of the Gaussian surface in part a is replaced by the larger curved surface as shown. The flat left-hand portion of the surface is unchanged. Does the value of phi_L change Explain. How does the flux through the new curved portion of the surface compare to the flux through the original curved portion of the surface Explain. Suppose that the curved portion of the Gaussian surface is replaced by the larger curved surface that encloses the charge as shown. The flat left-hand portion of the surface is still unchanged. Does the value of phi_L, change Explain. How does the flux through the new curved portion of the surface compare to the flux through the original curved portion of the surface Explain. Use Gauss' law to write an expression in terms of ohi_L, and q for the flux through the curved portion of the surface.

Explanation / Answer

Gauss law states that, the flux through the closed surface is equal to 1/0 times the charge enclosed by that surface.
= q/0


(a)
Since the Charge is outside the Surface, and no charge is enclosed by the closed surface, therefore according to Gauss law, Flux through the surface = Zero.

(b)
(i)
This case is also similar to case (a), as there is no charge enclosed by the Gaussian Surface, Therfore Flux through the surface = Zero.
(ii)
The flux remains the same in both the cases = 0.

(c)
(i)
Yes, As in this case Charge q is enclosed in the surface. So there will be some flux coming out of the surface.
(ii)
The Flux through the new Curved surface > Flux through the original Curved surface.

(iii)
Expression of flux through the closed surface is given by,
L = q/0

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote