An unpolarized beam of light passes through two polarizing sheets that are initi
ID: 1479089 • Letter: A
Question
An unpolarized beam of light passes through two polarizing sheets that are initially aligned so that the transmitted beam is maximal.
Part A.
By what angle should the second polarized sheet be rotated relative to the first to reduce the transmitted intensity to one-half the intensity that was transmitted through both polarizing sheets when aligned?
Part B.
By what angle should the second polarized sheet be rotated relative to the first to reduce the transmitted intensity to one-sixth the intensity that was transmitted through both polarizing sheets when aligned?
Explanation / Answer
part A)
let the angle rotated by the second sheet is theta
for I = 0.5 * maximum intensity
I = maximum intensity * cos(theta)^2
0.5 * maximum intensity = maximum intensity * cos(theta)^2
cos(theta) = 1/sqrt(2)
theta = 45 degree
the angle should the second polarized sheet be rotated relative to the first is 45 degree
part B)
let the angle rotated by the second sheet is theta
for I = maximum intensity/6
I = maximum intensity * cos(theta)^2
maximum intensity/6 = maximum intensity * cos(theta)^2
cos(theta) = 1/sqrt(6)
theta = 66 degree
the angle should the second polarized sheet be rotated relative to the first is 66 degree
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.