A solid sphere of radius R and mass M is placed in a wedge as shown in the figur
ID: 1377762 • Letter: A
Question
A solid sphere of radius R and mass M is placed in a wedge as shown in the figure. The inner surfaces of the wedge are frictionless.
pt. 1
1. FA = 2Mgsin(?)/sin(? + ?)
2.FA = Mgcos(?)/cos(? + ?)
3. FA = Mgcos(?)/sin(? + ?)
4. FA = Mgsin(?)/sin(? + ?)
5. FA = M g sin(?)/cos(? + ?)
6. FB = M g cos(?)/cos(? + ?)
Pt. 2
Determine the force exerted by the wedge on the sphere at the right contact point.
1.FB = M g sin(?)/ sin(? + ?)
2. FB = M g sin(?)/sin(? + ?)
3. FB = M g cos(?)/sin(? + ?)
4. FB = M g sin(?)/cos(? + ?)
5. FB = M g cos(?)/cos(? + ?)
6. FB = M g sin(?)/cos(? + ?)
Explanation / Answer
normal force due to surface A = N1
normal force due to surface B = N2
since the sphere is resting
so net vertical forces will be 0
so equating the vertical forces
N1 sin(alpha) + N2 sin(beta) = Mg
equating the horizontal force
N1 cos(alpha) = N2 cos(beta)
N2 = N1 cos(alpha) / cos(beta)
N1 sin(alpha) + N1 cos(alpha) sin(beta) / cos(beta) = Mg
N1 sin(alpha) cos(beta) + N1 cos(alpha) sin(beta) = Mg cos(beta)
N1 sin(apha + beta) = Mg cos(beta)
N1 = Mg cos(beta) / sin(alpha + beta)
force exerted by the wedge on the sphere at the left contact point = N1 = Mg cos(beta) / sin(alpha + beta)
now,
N1 = N2 cos(beta) / cos(alpha)
N2 sin(alpha) cos(beta) / cos(alpha) + N2 sin(beta) = Mg
N2 sin(alpha) cos(beta) + N2 sin(beta) cos(alpha) = Mg cos(alpha)
N2 sin(alpha + beta) = Mg cos(alpha)
N2 = Mg cos(alpha) / sin(alpha + beta)
force exerted by the wedge on the sphere at the right contact point = Mg cos(alpha) / sin(alpha + beta)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.