Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Below is data on weekly Quantity demanded of pizza in a small town in South Geor

ID: 1095579 • Letter: B

Question

Below is data on weekly Quantity demanded of pizza in a small town in South Georgia, prices and average household incomes. Use the data to perform a linear regression analysis of price and income on quantity demanded. (20 points) a) How well does the regression fit the data? b) What is the income elasticity of demand for pizza when the income (M) is $40 (thousand) and the price (P) is $30?

Quantity

Price

Income (thousand)

1

183

29.25

30.72

2

207

30.1

37.57

3

183

30.54

29.43

4

192

28.67

37.2

5

182

30.23

35.87

6

217

29.76

35.16

7

180

31.77

27.7

8

195

31.01

32.96

9

200

29.21

32.3

10

198

30.79

36.1

11

195

29.75

32.68

12

205

29.98

37.49

13

182

30.06

31.32

14

218

28.94

38.67

15

231

29.76

34.82

16

212

27.94

42.27

17

222

30.75

40.03

18

150

28.96

30.02

19

183

30.96

34.3

20

158

29.03

29.89

21

199

30.83

35.27

22

196

30.6

33.55

23

234

29.98

40.03

24

171

29.27

29.91

25

171

31.42

33.69

26

170

29.24

31.51

27

210

27.61

30.6

28

184

30.64

34.36

29

223

29.97

37.59

30

177

31.87

31.78

31

168

30.06

27.47

32

192

28.83

40.64

33

201

30.91

36.2

34

207

29.84

38.05

35

241

29.94

39.55

36

216

30.67

35.38

37

193

31.03

40.42

38

187

28.45

37.29

39

194

30.02

29.68

40

212

30.85

40.61

41

141

30.46

28.23

42

217

28.85

36.87

43

194

29.34

36.59

44

182

30.1

29.56

45

225

28.88

36.26

46

214

30.2

34.29

47

198

28.56

41.7

48

183

29.51

30.92

49

206

29.86

31.22

50

198

30.83

32.39

Quantity

Price

Income (thousand)

1

183

29.25

30.72

2

207

30.1

37.57

3

183

30.54

29.43

4

192

28.67

37.2

5

182

30.23

35.87

6

217

29.76

35.16

7

180

31.77

27.7

8

195

31.01

32.96

9

200

29.21

32.3

10

198

30.79

36.1

11

195

29.75

32.68

12

205

29.98

37.49

13

182

30.06

31.32

14

218

28.94

38.67

15

231

29.76

34.82

16

212

27.94

42.27

17

222

30.75

40.03

18

150

28.96

30.02

19

183

30.96

34.3

20

158

29.03

29.89

21

199

30.83

35.27

22

196

30.6

33.55

23

234

29.98

40.03

24

171

29.27

29.91

25

171

31.42

33.69

26

170

29.24

31.51

27

210

27.61

30.6

28

184

30.64

34.36

29

223

29.97

37.59

30

177

31.87

31.78

31

168

30.06

27.47

32

192

28.83

40.64

33

201

30.91

36.2

34

207

29.84

38.05

35

241

29.94

39.55

36

216

30.67

35.38

37

193

31.03

40.42

38

187

28.45

37.29

39

194

30.02

29.68

40

212

30.85

40.61

41

141

30.46

28.23

42

217

28.85

36.87

43

194

29.34

36.59

44

182

30.1

29.56

45

225

28.88

36.26

46

214

30.2

34.29

47

198

28.56

41.7

48

183

29.51

30.92

49

206

29.86

31.22

50

198

30.83

32.39

Explanation / Answer

Below is data on weekly Quantity demanded of pizza in a small town in South Georgia, prices and average household incomes.
Use the data to perform a regression analysis of price and income on quantity demanded. (20 points) a.) How well does the regression fit the data. b.) What is the income elasticity of demand for pizza?

Quantity

Price

Income

1

183

29.25

30.72

2

207

30.1

37.57

3

183

30.54

29.43

4

192

28.67

37.2

5

182

30.23

35.87

6

217

29.76

35.16

7

180

31.77

27.7

8

195

31.01

32.96

9

200

29.21

32.3

10

198

30.79

36.1

11

195

29.75

32.68

12

205

29.98

37.49

13

182

30.06

31.32

14

218

28.94

38.67

15

231

29.76

34.82

16

212

27.94

42.27

17

222

30.75

40.03

18

150

28.96

30.02

19

183

30.96

34.3

20

158

29.03

29.89

21

199

30.83

35.27

22

196

30.6

33.55

23

234

29.98

40.03

24

171

29.27

29.91

25

171

31.42

33.69

26

170

29.24

31.51

27

210

27.61

30.6

28

184

30.64

34.36

29

223

29.97

37.59

30

177

31.87

31.78

31

168

30.06

27.47

32

192

28.83

40.64

33

201

30.91

36.2

34

207

29.84

38.05

35

241

29.94

39.55

36

216

30.67

35.38

37

193

31.03

40.42

38

187

28.45

37.29

39

194

30.02

29.68

40

212

30.85

40.61

41

141

30.46

28.23

42

217

28.85

36.87

43

194

29.34

36.59

44

182

30.1

29.56

45

225

28.88

36.26

46

214

30.2

34.29

47

198

28.56

41.7

48

183

29.51

30.92

49

206

29.86

31.22

50

198

30.83

32.39

Answer:

We regress quantity demanded on price and income using ordinary least square.

The regression output has been given below: [refer excel sheet for details]

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.644179584

R Square

0.414967336

Adjusted R Square

0.390072329

Standard Error

16.42551057

Observations

50

ANOVA

df

SS

MS

F

Significance F

Regression

2

8994.34232

4497.17116

16.66869734

3.37857E-06

Residual

47

12680.47768

269.7973974

Total

49

21674.82

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Intercept

81.6969373

81.48518399

1.002598672

0.321188612

-82.23010861

Price

-0.121581938

2.518148135

-0.048282282

0.961695866

-5.187442561

Income

3.410691125

0.600170294

5.682872276

8.10149E-07

2.203304229

a.) How well does the regression fit the data

Answer:

It is the value of R-square that represents how well regression fit the data. From the table above, we note that value of R-Square is 0.414967 which is very low. In other words, only 41.49% of the total variation in quantity demanded is explained within the model (or only 41.49% of the total variation in quantity demanded is explained by price and income together). Since the value of R-square is low, we say that regression does not fit the data well.

However, when we do the joint test (or test the significance of model), we find that the model is significant (or price and income together significantly affect the quantity demanded for pizza) as represented by significantly high value of F-statistics (16.67).

b.) What is the income elasticity of demand for pizza?

Answer:

To derive income elasticity of demand, we take all variables in log form. Then rerun the regression using log(quantity) as dependent variable and log(price) and log(income) as dependent variable. In the resulting regression output, the coefficient of log(income) would denote income elasticity of demand for pizza.

The regression output has been given below; [refer excel sheet for details]

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.657289805

R Square

0.432029887

Adjusted R Square

0.407860947

Standard Error

0.036887474

Observations

50

ANOVA

df

SS

MS

F

Significance F

Regression

2

0.04864565

0.024322825

17.87541656

1.68519E-06

Residual

47

0.063952231

0.001360686

Total

49

0.112597881

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Intercept

1.318226864

0.619475112

2.127973891

0.038613043

0.072003684

log(Price)

0.003752581

0.387408005

0.009686379

0.992312508

-0.775611799

log(Income)

0.628878391

0.106536254

5.902951992

3.77361E-07

0.414555094

From the above table we note that coefficient of log(Income) is 0.628878391. So, income elasticity of demand for pizza is 0.628878391.

Quantity

Price

Income

1

183

29.25

30.72

2

207

30.1

37.57

3

183

30.54

29.43

4

192

28.67

37.2

5

182

30.23

35.87

6

217

29.76

35.16

7

180

31.77

27.7

8

195

31.01

32.96

9

200

29.21

32.3

10

198

30.79

36.1

11

195

29.75

32.68

12

205

29.98

37.49

13

182

30.06

31.32

14

218

28.94

38.67

15

231

29.76

34.82

16

212

27.94

42.27

17

222

30.75

40.03

18

150

28.96

30.02

19

183

30.96

34.3

20

158

29.03

29.89

21

199

30.83

35.27

22

196

30.6

33.55

23

234

29.98

40.03

24

171

29.27

29.91

25

171

31.42

33.69

26

170

29.24

31.51

27

210

27.61

30.6

28

184

30.64

34.36

29

223

29.97

37.59

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote