EDTA is a hexaprotic system with following pKa values: pKa1=0.00, pKa2=1.50, pKa
ID: 1031615 • Letter: E
Question
EDTA is a hexaprotic system with following pKa values: pKa1=0.00, pKa2=1.50, pKa3=2.00, pKa4=2.69, pKa5=6.13, pKa6=10.37
The distribution of protonated forms of EDTA will therefore vary woth pH.....
Calculate alphaY4- at the following two pH values: 3.10 & 10.65
Explanation / Answer
For EDTA,
pKa = -log[Ka]
so,
Ka1 = 0.1 ; Ka2 = 0.0316 ; Ka3 = 0.01 ; Ka4 = 2.042 x 10^-3 ; Ka5 = 7.41 x 10^-7 ; Ka6 = 4.3 x 10^-11
Now,
at pH = 3.10
pH = -log[H+]
[H+] = 8 x 10^-4 M
[A] = [H+]^6 + Ka1[H+]^5 + Ka1.Ka2[H+]^4 + Ka1.Ka2.Ka3[H+]^3 + Ka1.Ka2.Ka3.Ka4[H+]^2 + Ka1.Ka2.Ka3.Ka4.Ka5[H+] + Ka1.Ka2.Ka3.Ka4.Ka5.Ka6
= 2.62 x 10^-19 + 3.3 x 10^-17 + 1.3 x 10^-15 + 1.62 x 10^-14 + 4.13 x 10^-14 + 3.82 x 10^-17 + 2.06 x 10^-24
= 1.76 x 10^-14
alpha[Y4-] = Ka1.Ka2.Ka3.Ka4.Ka5.Ka6/[A]
= 2.06 x 10^-24/1.76 x 10^-14
= 1.17 x 10^-10
---
and,
at pH = 10.65
pH = -log[H+]
[H+] = 2.24 x 10^-11 M
[A] = [H+]^6 + Ka1[H+]^5 + Ka1.Ka2[H+]^4 + Ka1.Ka2.Ka3[H+]^3 + Ka1.Ka2.Ka3.Ka4[H+]^2 + Ka1.Ka2.Ka3.Ka4.Ka5[H+] + Ka1.Ka2.Ka3.Ka4.Ka5.Ka6
= 1.26 x 10^-64 + 5.64 x 10^-55 + 8 x 10^-46 + 3.55 x 10^-37 + 3.24 x 10^-29 + 1.1 x 10^-24 + 2.06 x 10^-24
= 3.16 x 10^-24
alpha[Y4-] = Ka1.Ka2.Ka3.Ka4.Ka5.Ka6/[A]
= 2.06 x 10^-24/3.16 x 10^-24
= 0.652
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.