A2 Vapour-liquid equilibrium behaviour for mixtures of 1-propanol and water carn
ID: 702677 • Letter: A
Question
A2 Vapour-liquid equilibrium behaviour for mixtures of 1-propanol and water carn be roughly approximated using the Margules activity model with the Margules parameters A12 2.248 and A21 1.019, where '1 is propanol and '2' is water. Antoine coefficient data for water and 1-propanol are provided in Table A2. It is known that an azeotrope exists for this binary system at atmospheric pressure Show that this azeotrope occurs at a 1-propanol mole fraction of 0.436 and determine the temperature at which the azeotrope occurs. [16 marks] Table A2 - Antoine coefficient data (pressure in kPa, temperature in oC_logarithm to base e) Water 1-propanol 16.3872 16.1154 3885.7 3483.67 230.170 205.807Explanation / Answer
Margules equation
ln ?1=x22(A12+2(A21-A12)*x1)
ln ?2=x12(A21+2(A12-A21)*x2)
So
x1=0.436
x2=0.564
ln ?1=0.5642*(2.248+2(1.019-2.248)0.436)
?1=1.453
ln ?2=0.4362(1.019+2(2.248-1.019)0.564)
?2=1.58
Now we know that relative volatility
K1=y1/x1=?1P1sat/P
K2=y2/x2=?2P2sat/P
Now for azeotrope
y=x
K=1
So
?1P1sat/P=?2P2sat/P
So
?1*P1sat=?2*P2sat
So from antoine equation
ln P1sat=16.1154 - 3483.67/(T+205.807)
ln P2sat=16.3872-3885.7/(T+230.170)
So
ln ?1+ln P1sat=ln ?2+ln P2sat
ln 1.453+16.1154 - 3483.67/(T+205.807)=ln 1.58 +16.3872-3885.7/(T+230.170)
3885.7/(T+230.170)- 3483.67/(T+205.807)=0.36
0.36T2-245.08T+1726885.48=0
Solving this equation we get
T=340.38 0C
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.