Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

note: if you are not a tutor in chegg don\'t leave comment for tutoring !! there

ID: 652234 • Letter: N

Question

note: if you are not a tutor in chegg don't leave comment for tutoring !!

there are three classes linkedList, person, unorderedlinkedlist

someone help me to solve these questions on these headers

Extend the unOrderedLinkedList Class, its superclass and the Person class to accomplish the following:

You have to keep a linked list of persons sorted by their age.

Find and delete the node with the smallest info (in this case smallest age). Delete only the first occurrence by traversing the list only once. The signature of the function should be

void FindDeleteSmallest().

Find and delete all occurrences of a given info (age) from the list. The signature of the function should be

void FindDeleteAllOccurances(Person p).

****************************************************************************************************************************

the the three classes that have inheretance :

#ifndef H_LinkedListType
#define H_LinkedListType

#include <iostream>
#include <cassert>

using namespace std;

//Definition of the node

template <class Type>
struct nodeType
{
Type info;
nodeType<Type> *link;
};

//***********************************************************
// Author: D.S. Malik
//
// This class specifies the members to implement an iterator
// to a linked list.
//***********************************************************

template <class Type>
class linkedListIterator
{
public:
    linkedListIterator();
      //Default constructor
      //Postcondition: current = NULL;

    linkedListIterator(nodeType<Type> *ptr);
      //Constructor with a parameter.
      //Postcondition: current = ptr;

    Type operator*();
      //Function to overload the dereferencing operator *.
      //Postcondition: Returns the info contained in the node.

    linkedListIterator<Type> operator++();   
      //Overload the preincrement operator.
      //Postcondition: The iterator is advanced to the next node.

    bool operator==(const linkedListIterator<Type>& right) const;
      //Overload the equality operator.
      //Postcondition: Returns true if this iterator is equal to
      //    the iterator specified by right, otherwise it returns
      //    false.

    bool operator!=(const linkedListIterator<Type>& right) const;
      //Overload the not equal to operator.
      //Postcondition: Returns true if this iterator is not equal to
      //    the iterator specified by right, otherwise it returns
      //    false.

private:
    nodeType<Type> *current; //pointer to point to the current
                             //node in the linked list
};


template <class Type>
linkedListIterator<Type>::linkedListIterator()
{
    current = NULL;
}

template <class Type>
linkedListIterator<Type>::
                  linkedListIterator(nodeType<Type> *ptr)
{
    current = ptr;
}

template <class Type>
Type linkedListIterator<Type>::operator*()
{
    return current->info;
}

template <class Type>
linkedListIterator<Type> linkedListIterator<Type>::operator++()  
{
    current = current->link;

    return *this;
}

template <class Type>
bool linkedListIterator<Type>::operator==
               (const linkedListIterator<Type>& right) const
{
    return (current == right.current);
}

template <class Type>
bool linkedListIterator<Type>::operator!=
                 (const linkedListIterator<Type>& right) const
{   return (current != right.current);
}


//***********************************************************
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of a linked list. This is an abstract class.
// We cannot instantiate an object of this class.
//***********************************************************

template <class Type>
class linkedListType
{
public:
    const linkedListType<Type>& operator=
                         (const linkedListType<Type>&);
      //Overload the assignment operator.

    void initializeList();
      //Initialize the list to an empty state.
      //Postcondition: first = NULL, last = NULL, count = 0;

    bool isEmptyList() const;
      //Function to determine whether the list is empty.
      //Postcondition: Returns true if the list is empty, otherwise
      //    it returns false.

    void print() const;
      //Function to output the data contained in each node.
      //Postcondition: none

    int length() const;
      //Function to return the number of nodes in the list.
      //Postcondition: The value of count is returned.

    void destroyList();
      //Function to delete all the nodes from the list.
      //Postcondition: first = NULL, last = NULL, count = 0;

    Type front() const;
      //Function to return the first element of the list.
      //Precondition: The list must exist and must not be empty.
      //Postcondition: If the list is empty, the program terminates;
      //    otherwise, the first element of the list is returned.

    Type back() const;
      //Function to return the last element of the list.
      //Precondition: The list must exist and must not be empty.
      //Postcondition: If the list is empty, the program
      //               terminates; otherwise, the last
      //               element of the list is returned.

    virtual bool search(const Type& searchItem) const = 0;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is in the list,
      //    otherwise the value false is returned.

    virtual void insertFirst(const Type& newItem) = 0;
      //Function to insert newItem at the beginning of the list.
      //Postcondition: first points to the new list, newItem is
      //    inserted at the beginning of the list, last points to
      //    the last node in the list, and count is incremented by
      //    1.

    virtual void insertLast(const Type& newItem) = 0;
      //Function to insert newItem at the end of the list.
      //Postcondition: first points to the new list, newItem is
      //    inserted at the end of the list, last points to the
      //    last node in the list, and count is incremented by 1.

    virtual void deleteNode(const Type& deleteItem) = 0;
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing deleteItem is
      //    deleted from the list. first points to the first node,
      //    last points to the last node of the updated list, and
      //    count is decremented by 1.

    linkedListIterator<Type> begin();
      //Function to return an iterator at the beginning of the
      //linked list.
      //Postcondition: Returns an iterator such that current is set
      //    to first.

    linkedListIterator<Type> end();
      //Function to return an iterator one element past the
      //last element of the linked list.
      //Postcondition: Returns an iterator such that current is set
      //    to NULL.

    linkedListType();
      //default constructor
      //Initializes the list to an empty state.
      //Postcondition: first = NULL, last = NULL, count = 0;

    linkedListType(const linkedListType<Type>& otherList);
      //copy constructor

    ~linkedListType();  
      //destructor
      //Deletes all the nodes from the list.
      //Postcondition: The list object is destroyed.

protected:
    int count; //variable to store the number of list elements
                 //
    nodeType<Type> *first; //pointer to the first node of the list
    nodeType<Type> *last; //pointer to the last node of the list

private:
    void copyList(const linkedListType<Type>& otherList);
      //Function to make a copy of otherList.
      //Postcondition: A copy of otherList is created and assigned
      //    to this list.
};

template <class Type>
bool linkedListType<Type>::isEmptyList() const
{
    return (first == NULL);
}

template <class Type>
linkedListType<Type>::linkedListType() //default constructor
{
    first = NULL;
    last = NULL;
    count = 0;
}

template <class Type>
void linkedListType<Type>::destroyList()
{
    nodeType<Type> *temp;   //pointer to deallocate the memory
                            //occupied by the node
    while (first != NULL)   //while there are nodes in the list
    {
        temp = first;        //set temp to the current node
        first = first->link; //advance first to the next node
        delete temp;   //deallocate the memory occupied by temp
    }

    last = NULL; //initialize last to NULL; first has already
                 //been set to NULL by the while loop
    count = 0;
}

template <class Type>
void linkedListType<Type>::initializeList()
{
destroyList(); //if the list has any nodes, delete them
}

template <class Type>
void linkedListType<Type>::print() const
{
    nodeType<Type> *current; //pointer to traverse the list

    current = first;    //set current so that it points to
                        //the first node
    while (current != NULL) //while more data to print
    {
        cout << current->info << " ";
        current = current->link;
    }
}//end print

template <class Type>
int linkedListType<Type>::length() const
{
    return count;
} //end length

template <class Type>
Type linkedListType<Type>::front() const
{  
    assert(first != NULL);

    return first->info; //return the info of the first node
}//end front

template <class Type>
Type linkedListType<Type>::back() const
{  
    assert(last != NULL);

    return last->info; //return the info of the last node
}//end back

template <class Type>
linkedListIterator<Type> linkedListType<Type>::begin()
{
    linkedListIterator<Type> temp(first);

    return temp;
}

template <class Type>
linkedListIterator<Type> linkedListType<Type>::end()
{
    linkedListIterator<Type> temp(NULL);

    return temp;
}

template <class Type>
void linkedListType<Type>::copyList
                   (const linkedListType<Type>& otherList)
{
    nodeType<Type> *newNode; //pointer to create a node
    nodeType<Type> *current; //pointer to traverse the list

    if (first != NULL) //if the list is nonempty, make it empty
       destroyList();

    if (otherList.first == NULL) //otherList is empty
    {
        first = NULL;
        last = NULL;
        count = 0;
    }
    else
    {
        current = otherList.first; //current points to the
                                   //list to be copied
        count = otherList.count;

            //copy the first node
        first = new nodeType<Type>; //create the node

        first->info = current->info; //copy the info
        first->link = NULL;        //set the link field of
                                   //the node to NULL
        last = first;              //make last point to the
                                   //first node
        current = current->link;     //make current point to
                                     //the next node

           //copy the remaining list
        while (current != NULL)
        {
            newNode = new nodeType<Type>; //create a node
            newNode->info = current->info; //copy the info
            newNode->link = NULL;       //set the link of
                                        //newNode to NULL
            last->link = newNode; //attach newNode after last
            last = newNode;        //make last point to
                                   //the actual last node
            current = current->link;   //make current point
                                       //to the next node
        }//end while
    }//end else
}//end copyList

template <class Type>
linkedListType<Type>::~linkedListType() //destructor
{
   destroyList();
}//end destructor

template <class Type>
linkedListType<Type>::linkedListType
                      (const linkedListType<Type>& otherList)
{
   first = NULL;
    copyList(otherList);
}//end copy constructor

         //overload the assignment operator
template <class Type>
const linkedListType<Type>& linkedListType<Type>::operator=
                      (const linkedListType<Type>& otherList)
{
    if (this != &otherList) //avoid self-copy
    {
        copyList(otherList);
    }//end else

     return *this;
}

#endif

***************************************************

2) the unorderedlikedlist header

#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

//***********************************************************
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an unordered linked list. This class is
// derived from the class linkedListType.
//***********************************************************

#include "linkedList.h"

using namespace std;

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:
    bool search(const Type& searchItem) const;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is in the list,
      //    otherwise the value false is returned.

    void insertFirst(const Type& newItem);
      //Function to insert newItem at the beginning of the list.
      //Postcondition: first points to the new list, newItem is
      //    inserted at the beginning of the list, last points to
      //    the last node, and count is incremented by 1.
      //              

    void insertLast(const Type& newItem);
      //Function to insert newItem at the end of the list.
      //Postcondition: first points to the new list, newItem is
      //    inserted at the end of the list, last points to the
      //    last node, and count is incremented by 1.

    void deleteNode(const Type& deleteItem);
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing deleteItem
      //    is deleted from the list. first points to the first
      //    node, last points to the last node of the updated
      //    list, and count is decremented by 1.
};


template <class Type>
bool unorderedLinkedList<Type>::
                   search(const Type& searchItem) const
{
    nodeType<Type> *current; //pointer to traverse the list
    bool found = false;
   
    current = first; //set current to point to the first
                     //node in the list

    while (current != NULL && !found)    //search the list
        if (current->info == searchItem) //searchItem is found
            found = true;
        else
            current = current->link; //make current point to
                                     //the next node
    return found;
}//end search

template <class Type>
void unorderedLinkedList<Type>::insertFirst(const Type& newItem)
{
    nodeType<Type> *newNode; //pointer to create the new node

    newNode = new nodeType<Type>; //create the new node

    newNode->info = newItem;    //store the new item in the node
    newNode->link = first;      //insert newNode before first
    first = newNode;            //make first point to the
                                //actual first node
    count++;                    //increment count

    if (last == NULL)   //if the list was empty, newNode is also
                        //the last node in the list
        last = newNode;
}//end insertFirst

template <class Type>
void unorderedLinkedList<Type>::insertLast(const Type& newItem)
{
    nodeType<Type> *newNode; //pointer to create the new node

    newNode = new nodeType<Type>; //create the new node

    newNode->info = newItem; //store the new item in the node
    newNode->link = NULL;     //set the link field of newNode
                              //to NULL

    if (first == NULL) //if the list is empty, newNode is
                        //both the first and last node
    {
        first = newNode;
        last = newNode;
        count++;        //increment count
    }
    else    //the list is not empty, insert newNode after last
    {
        last->link = newNode; //insert newNode after last
        last = newNode; //make last point to the actual
                        //last node in the list
        count++;        //increment count
    }
}//end insertLast


template <class Type>
void unorderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{
    nodeType<Type> *current; //pointer to traverse the list
    nodeType<Type> *trailCurrent; //pointer just before current
    bool found;

    if (first == NULL)    //Case 1; the list is empty.
        cout << "Cannot delete from an empty list."
            << endl;
    else
    {
        if (first->info == deleteItem) //Case 2
        {
            current = first;
            first = first->link;
            count--;
            if (first == NULL)    //the list has only one node
                last = NULL;
            delete current;
        }
        else //search the list for the node with the given info
        {
            found = false;
            trailCurrent = first; //set trailCurrent to point
                                   //to the first node
            current = first->link; //set current to point to
                                   //the second node

            while (current != NULL && !found)
            {
                if (current->info != deleteItem)
                {
                    trailCurrent = current;
                    current = current-> link;
                }
                else
                    found = true;
            }//end while

            if (found) //Case 3; if found, delete the node
            {
                trailCurrent->link = current->link;
                count--;

                if (last == current)   //node to be deleted
                                       //was the last node
                    last = trailCurrent; //update the value
                                         //of last
                delete current; //delete the node from the list
            }
            else
                cout << "The item to be deleted is not in "
                    << "the list." << endl;
        }//end else
    }//end else
}//end deleteNode


#endif

****************************************

3) person class

#ifndef H_Person
#define H_Person

//***********************************************************

#include <string>
#include <iostream>

using namespace std;

class Person
{

public:
Person ();
Person (string lname, string fname, int age);
void setLname(string lname);
void setFname(string fname);
void setAge (int a);
string getFname();
string getLname();
const int getAge();
void print();

const bool operator<(const Person& p);

private:
string lastname;
string firstname;
int    age;
};

Person::Person()
{
firstname = "";
lastname = "";
age = -1;
}

Person::Person(string lname, string fname, int age)
{
setFname(fname);
setLname(lname);
setAge(age);
}

void Person::setLname(string lname)
{
lastname = lname;
}

void Person::setFname(string fname)
{
firstname = fname;
}

void Person::setAge(int a)
{
age = a;
}

string Person::getFname()
{
return firstname;
}

string Person::getLname()
{
return lastname;
}

const int Person::getAge()
{
return age;
}

void Person::print()
{
cout << "Firstname: "<< getFname() << endl;
cout << "Lastname: "<< getLname() << endl;
cout << "Age: "<< getAge() <<endl;
}

const bool Person::operator<(const Person& p)
{
return getAge() < p.age;
}

#endif

Explanation / Answer

typedef struct node

{

String firstName;

String lastName;

int age;

node *next;

}

void sort()

{

node *current = HEAD;

node *second = current->next;

node *temp;

while(current->next->next != NULL)

{

if (current->age > current->next->age)

{

temp = current;

current = second;

second = temp;

}

current = current->next;

}

// to delete smallest node

temp = second;

current->next = NULL; // As current is at second last node already

free(temp);

}

}