A mortar* crew is positioned near the top of a steep hill. Enemy forces are char
ID: 584067 • Letter: A
Question
A mortar* crew is positioned near the top of a steep hill. Enemy forces are charging up the hill and it is necessary for the crew to spring into action. Angling the mortar at an angle of ? = 60.0o (as shown), the crew fires the shell at a muzzle velocity of 219 feet per second. How far down the hill does the shell strike if the hill subtends an angle ? = 39.0o from the horizontal? (Ignore air friction.)
Number How long will the mortar shell remain in the air? Number How fast will the shell be traveling when it hits the ground? Number m/sExplanation / Answer
along horizantal
vox = v*costheta = 219*cos60
x = d*cosphi = d*cos39
ax = 0
from equation of motion
x = vox*T
T = x/(vo*costheta)
along vertical
displacement dy = -d*sinphi
initial velocity voy = vo*sintheta
aceeleration ay = -32 ft/s^2
dy = voy*T + 0.5*ay*T^2
-d*sinphi = (vo*sintheta*d*cosphi)/(vo*costheta) + 0.5*ay*d^2*(cosphi)^2/(vo^2*(costheta)^2)
-d*sin39 = (d*sin39*tan60) - (0.5*32*d^2*(cos39)^2)/(219^2*(cos60)^2)
d = 2133.36 ft = 650.25 m
+++++++++++
T = d*cosphi/(vo*costheta)
T = (2133.36*cos39)/(219*cos60) = 15.14 s
++++++++++++++
vy = voy + ay*T
vy = (219*sin60) - (32*15.14) = -294.8 ft/s = 89.86 m/s
vx = vox = 219*cos60 = 109.5 ft/s = 33.4 m/s
speed = sqrt(vx^2+vy^2) = 95.8 m/s <---answer
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.