Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

H C H H C CH2 HaC CH3 H C CH3 2 H2 (1) Calculate the enthalpy change (2) Assurmi

ID: 553204 • Letter: H

Question

H C H H C CH2 HaC CH3 H C CH3 2 H2 (1) Calculate the enthalpy change (2) Assurming the entropy change is zero, calculate the equilibrium constant at 298 K TABLE 4-2 Bond-Dissociation Enthalpies for Homolvtic Cleavages A:B A-+-B Enthalpy Enthalpy keal/mol Bond kJ/mol kcal/molBond H X bonds and X X bonds Bonds to secondary cuhons 95 106 104 CHo)bCH H 106 38 (CH) CH C 58 (CHs) CH Br 435 CH3)2CHF 335 159 242 192 151 F-F Br Br I-I (CH,)2CH-I 36 381 136 CH CH OH 103 Bonds o wetiary carbons 88CH)CH 431 91 106 381 H Br (CH)C F 331 119(CH)C C HO H HO OH 498 213 (CH C Br (CH)CI

Explanation / Answer

In the given reaction the bonds that are broken C-C(Secondary) and C-H(tertiary carbon)

Energy absorbed for breaking bonds = C-C(Secondary) + C-H(tertiary carbon) = 356+381 = 737 KJ

The bonds that are formed C-C(tertiary) and C-H(primary carbon)

Energy released in formation of bonds = 339+410 = -749 KJ

dH, Enthalpy change = Energy for breaking of bonds-energy for formation of bonds

dH = 737 - 749 = -12 KJ

The free energy equation is given by, G = H-TS

If entropy change = 0, then TS =0

G = H = -12 KJ

Now, the equilirium constant is given by G = -RTlnK

lnK = -(G/RT)

K = e^-(G/RT)

K = e^-(-12KJ/8.314*10^-3KJ*298) = 127