An experimental device that produces excess heat is passively cooled. The additi
ID: 474858 • Letter: A
Question
Explanation / Answer
For the given system,
copper pin fins are used to augment the rate of cooling.
Diameter of fin (D) = 0.25cm = 0.0025m
wall temperature (T0) = 950C
Air temperature (T) = 250C
for copper fin, thermal conductivity (k) = 401 w/m.K
For natural convection, heat transfer coefficient (h) = 10 w/m2.k
Cross sectional area of fin (A) = D2/4 = 4.9*10-6 m2
Perimeter of fin (p) = *D = 7.85*10-3 m
a)
i) For infinitely long fin,
we take temperature of fin tip equal to (T)
Heat loss(Q) = (hPkA)0.5 (T - T)
(Q) = (10 * 7.85*10-3 * 401 * 4.9*10-6 )0.5 (95-25)
Q = 0.37 W
ii) for fin of lenght (L) 2.5 cm = 0.025 m
through convective heat transfer,
The heat loss (Q) = (hPkA)0.5 (T - T) (sinh mL + (h/mk) cosh mL) / (cosh mL + (h/mk) sinh mL)
where m = (hP/kA)0.5 = (10*7.85*10-3 /401*4.9*10-6 )0.5 = 6.32
mL = 6.32*0.025 = 0.158
h/mk = 10/6.32*401 = 3.9*10-3
(Q) = (hPkA)0.5 (T - T) (sinh mL + (h/mk) cosh mL) / (cosh mL + (h/mk) sinh mL)
= [(10 * 7.85*10-3 * 401 * 4.9*10-6 )0.5][(95-25)][(sinh 0.158 + 3.9*10-3 cosh 0.158 )/(cosh 0.158 + 3.9*10-3 sinh 0.158)]
= 0.37 * 0.9136
Q = 0.338 W
b) For infinitely long fin solution to be correct within 5%,the lenght should be
(Q for lenght L) = 0.95 * (Q for infinite long fin)
(hPkA)0.5 (T - T) (sinh mL + (h/mk) cosh mL) / (cosh mL + (h/mk) sinh mL) = 0.95 * (hPkA)0.5 (T - T)
(sinh mL + (h/mk) cosh mL) / (cosh mL + (h/mk) sinh mL) = 0.95
We have calculated
m = (hP/kA)0.5 = (10*7.85*10-3 /401*4.9*10-6 )0.5 = 6.32
h/mk = 10/6.32*401 = 3.9*10-3
sinh mL + 3.9*10-3 cosh mL = 0.95 (cosh mL + 3.9*10-3 sinh mL)
sinh mL + 3.9*10-3 cosh mL = 0.95 cosh mL + 3.7*10-3 sinh mL
0.9963 sinh mL = 0.9461 cosh mL
tanh mL = 0.9461/0.9963 = 0.9496
mL = tanh -1 0.9496
= 0.5 ln[(1+0.9496)/(1-0.9496)]
= 1.83
where m = 6.32
L = 1.83 / 6.32
L= 0.289 m
The fin should be 0.289m long
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.