Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Better Products, Inc., manufactures three products on two machines. In a typical

ID: 470429 • Letter: B

Question

Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. The profit contribution and production time in hours per unit are as follows:

Category Product 1, Product 2, Product 3

Profit/unit $31, $60, $16

Machine 1 time/unit 0.5, 1.5, 1.5

Machine 2 time/unit 1, 1.5, 1

Two operators are required for machine 1; thus, 2 hours of labor must be scheduled for each hour of machine 1 time. Only one operator is required for machine 2. A maximum of 120 labor-hours is available for assignment to the machines during the coming week. Other production requirements are that product 1 cannot account for more than 55% of the units produced and that product 3 must account for at least 25% of the units produced.

(a) How many units of each product should be produced to maximize the total profit contribution? If required, round your answers to the nearest integer.

Explanation / Answer

Let x1, x2 and x3 be the number of units of Product 1, Product 2 and Product 3 respectively.

Thus, the objective function is

Maximize p = 31x1 + 60x2 + 16x3

Subject to

0.5x1 + 1.5x2 + 1.5x3 <= 40 (Machine 1 constraint)

x1 + 1.5x2 + x3 <= 40 (Machine 2 constraint)

3x1 + 4.5x2 + 4x3 <= 120 (Labour hours constraint)

x1 <= 0.55 (x1 + x2 + x3) or 0.45x1 - 0.55x2 - 0.55x3 <= 0 (Marketing constraint for Product 1)

x3 >= 0.25 (x1 + x2 + x3) or 0.25x1 + 0.25x2 - 0.75x3 <=0

x1, x2, x3 >= 0

We proceed with the simplex algorithm for solving:

Tableau #1
x1     x2     x3     s1     s2     s3     s4     s5     p           
0.5    1.5    1.5    1      0      0      0      0      0      40   
1      1.5    1      0      1      0      0      0      0      40   
3      4.5    4      0      0      1      0      0      0      120  
0.45   -0.55 -0.55 0      0      0      1      0      0      0    
0.25   0.25   -0.75 0      0      0      0      1      0      0    
-31    -60    -16    0      0      0      0      0      1      0    

Tableau #2
x1     x2     x3     s1     s2     s3     s4     s5     p           
-1     0      6      1      0      0      0      -6     0      40   
-0.5   0      5.5    0      1      0      0      -6     0      40   
-1.5   0      18     0      0      1      0      -18    0      120  
1      0      -2.2   0      0      0      1      2.2    0      0    
1      1      -3     0      0      0      0      4      0      0    
29     0      -200   0      0      0      0      240    1      0    

Tableau #3
x1     x2     x3     s1     s2     s3     s4     s5     p           
-0.17 0      1      0.17   0      0      0      -1     0      6.7  
0.42   0      0      -0.92 1      0      0      -0.5   0      3.3  
1.4    0      0      -2.9   0      1      0      -0.5   0      3.3  
0.63   0      0      0.37   0      0      1      0      0      15   
0.5    1      0      0.5    0      0      0      1      0      20   
-3.7   0      0      33     0      0      0      44     1      1300

Tableau #4
x1     x2     x3     s1     s2     s3     s4     s5     p           
0      0      1      -0.18 0      0.12   0      -1.1   0      7.1  
0      0      0      -0.059 1      -0.29 0      -0.35 0      2.4  
1      0      0      -2.1   0      0.71   0      -0.35 0      2.4  
0      0      0      1.7    0      -0.45 1      0.22   0      13   
0      1      0      1.5    0      -0.35 0      1.2    0      19   
0      0      0      25     0      2.6    0      43     1      1300  

Optimal Solution: p = 1300; x1 = 2.4, x2 = 19, x3 = 7.1

Rounding off to the nearest integers:

Units of Product 1 = x1 = 2

Units of Product 2 = x2 = 19

Units of Product 3 = x3 = 7

Projected weekly profit = 31* 2 + 60*19 + 16*7 = $1314

Time on Machine 1 = 0.5x1 + 1.5x2 + 1.5x3 = 40 hours

Time on Machine 2 = x1 + 1.5x2 + x3 = 37.5 hours

Pj - Cj = -2.6 for s3 (Labour constraint).

Thus, value of each hour of labour = $ 2.6

On adding labour, the new labour constraint becomes:

3x1 + 4.5x2 + 4x3 <= 130

We again solve by the simplex method.

Tableau #1
x1     x2     x3     s1     s2     s3     s4     s5     p           
0.5    1.5    1.5    1      0      0      0      0      0      40   
1      1.5    1      0      1      0      0      0      0      40   
3      4.5    4      0      0      1      0      0      0      130  
0.45   -0.55 -0.55 0      0      0      1      0      0      0    
0.25   0.25   -0.75 0      0      0      0      1      0      0    
-31    -60    -16    0      0      0      0      0      1      0    

Tableau #2
x1     x2     x3     s1     s2     s3     s4     s5     p           
-1     0      6      1      0      0      0      -6     0      40   
-0.5   0      5.5    0      1      0      0      -6     0      40   
-1.5   0      18     0      0      1      0      -18    0      130  
1      0      -2.2   0      0      0      1      2.2    0      0    
1      1      -3     0      0      0      0      4      0      0    
29     0      -200   0      0      0      0      240    1      0    

Tableau #3
x1     x2     x3     s1     s2     s3     s4     s5     p           
-0.17 0      1      0.17   0      0      0      -1     0      6.7  
0.42   0      0      -0.92 1      0      0      -0.5   0      3.3  
1.4    0      0      -2.9   0      1      0      -0.5   0      13   
0.63   0      0      0.37   0      0      1      0      0      15   
0.5    1      0      0.5    0      0      0      1      0      20   
-3.7   0      0      33     0      0      0      44     1      1300

Tableau #4
x1     x2     x3     s1     s2     s3     s4     s5     p           
0      0      1      -0.2   0.4    0      0      -1.2   0      8    
1      0      0      -2.2   2.4    0      0      -1.2   0      8    
0      0      0      0.2    -3.4   1      0      1.2    0      2    
0      0      0      1.8    -1.5   0      1      0.76   0      9.6  
0      1      0      1.6    -1.2   0      0      1.6    0      16   
0      0      0      25     8.8    0      0      40     1      1300

Optimal Solution: p = 1300; x1 = 8, x2 = 16, x3 = 8

Thus,

Units of Product 1 = 8

Units of Product 2 = 16

Units of Product 3 = 8

Profit = 1300

As we do not see any increase in the profit, we will not use the additional labour.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Chat Now And Get Quote