MCDONALD\'S FAMILY PRODUCTION PLANNING PROBLEM McDonald\'s family owns five parc
ID: 448024 • Letter: M
Question
MCDONALD'S FAMILY PRODUCTION PLANNING PROBLEM
McDonald's family owns five parcels of farmland broken into a southeast sector, north sector, northwest sector, west sector, and southwest sector. Family is involved primarily in growing wheat, alfalfa, and barley crops and is currently preparing production plan for next year. The Pennsylvania Water Authority has just announced its yearly water allotment, with McDonald farm receiving 7,400 acre-feet. Each parcel can only tolerate a specified amount of irrigation per growing season, as specified in the following table:
Parcel
Acres
Water irrigation limit (acre-feet)
Southeast
2,000
3,200
North
2,300
3,400
Northwest
600
800
West
1,100
500
Southwest
500
600
Each crop needs a minimum amount of water per acre, and there is a projected limit on sales of each crop. Crop data is shown below:
Crop
Maximum Sales
Water needed per acre (acre-feet)
Wheat
110,000 bushels
1.6
Alfa;fa
1,800 tons
2.9
Barley
2,200 tons
3.5
McDonald's family best estimate is that they can sell wheat at a net profit of $2 per bushel, alfalfa at $40 per ton, and barley at $50 per ton. One acre of land yields an average of 1.5 tons of alfalfa and 2.2 tons of barley. The wheat yield is approximately 50 bushels per acre.
LP was formulated to develop a production plan for McDonald's family.
The following 15 variables were used:
Xij= acres of crop i planted on parcel j
where i = 1 for wheat, 2 for alfalfa, 3 for barley
j = 1 to 5 for SE, N, NW, W, and SW parcels
OBJECTIVE FUNCTION IS TO MAXIMIZE PROFIT:
MAX ($2*50bushels)X11+ 100X12 + 100X13 + 100X14 + 100X15+ ($40*1.5tons)X21+ 60X22 + 60X23 + 60X24 + 60X25+ ($50*2.2 tons)X31+ 110X32 + 110X33 + 110X34 + 110X35 <ART FILE="08_14eq02.EPS" W="183.121pt" H="29.114pt" XS="100%" YS="100%"/>
S.T
Irrigation limits constraints:
1.6X11 + 2.9X21 + 3.5X31 £ 3,200 acre-feet in SE
1.6X12 + 2.9X22 + 3.5X32 £ 3,400 acre-feet in N
1.6X13 + 2.9X23 + 3.5X33 £ 800 acre-feet in NW
1.6X14 + 2.9X24 + 3.5X34 £ 500 acre-feet in W
1.6X15 + 2.9X25 + 3.5X35 £ 600 acre-feet in SW
Total water acre-feet constraint
1.6X11+ 1.6X12 + 1.6X13 + 1.6X14 + 1.6X15+ 2.9X21+ 2.9X22 + 2.9X23 + 2.9X24 + 2.9X25+ 3.5X31+ 3.5X32 + 3.5X33 + 3.5X34 + 3.5X35 <= 7,400 water acre-feet total
Sales limits Constraints:
X11 + X12 + X13 + X14 + X15 £ 2,200 wheat in acres (= 110,000 bushels/50 bushels per acre)
X21 + X22 + X23 + X24 + X25 £ 1,200 alfalfa in acres (= 1,800 tons/1.5 tons per acre)
X31 + X32 + X33 + X34 + X35 £ 1,000 barley in acres (= 2,200 tons/2.2 tons per acre)
Acreage availability constraints:
X11 + X21 + X31 £ 2,000 acres in SE parcel
X12 + X22 + X32 £ 2,300 acres in N parcel
X13 + X23 + X33 £ 600 acres in NW parcel
X14 + X24 + X34 £ 1,100 acres in W parcel
X15 + X25 + X35 £ 500 acres in SW parcel
LIDO software was used to solve the above problem. All of the output is shown below:
MAX 100X11+ 100X12 + 100X13 + 100X14 + 100X15+ 60X21+ 60X22 + 60X23 + 60X24 + 60X25+ 110X31+ 110X32 + 110X33 + 110X34 + 110X35
S.T.
1.6 X11 + 2.9 X21 + 3.5 X31<=3200
1.6X12 + 2.9X22 + 3.5X32<=3400
1.6X13 + 2.9X23 + 3.5X33<=800
1.6X14 + 2.9X24 + 3.5X34<=500
1.6X15 + 2.9X25 + 3.5X35<=600
1.6X11+ 1.6X12 + 1.6X13 + 1.6X14 + 1.6X15+ 2.9X21+ 2.9X22 + 2.9X23 + 2.9X24 + 2.9X25+ 3.5X31+ 3.5X32 + 3.5X33 + 3.5X34 + 3.5X35 <= 7400
X11 + X12 + X13 + X14 + X15<=2200
X21 + X22 + X23 + X24 + X25<=1200
X31 + X32 + X33 + X34 + X35<=1000
X11 + X21 + X31<=2000
X12 + X22 + X32<=2300
X13 + X23 + X33<=600
X14 + X24 + X34<=1100
X15 + X25 + X35<=500
LP OPTIMUM FOUND AT STEP 6
OBJECTIVE FUNCTION VALUE
1) 337862.1
VARIABLE VALUE REDUCED COST
X11 187.500000 0.000000
X12 1887.500000 0.000000
X13 125.000000 0.000000
X14 0.000000 0.000000
X15 0.000000 0.000000
X21 0.000000 0.000002
X22 131.034485 0.000000
X23 0.000000 0.000002
X24 0.000000 0.000002
X25 0.000000 0.000002
X31 828.571411 0.000000
X32 0.000000 0.000000
X33 0.000000 0.000000
X34 0.000000 0.000000
X35 171.428574 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.000000
3) 0.000000 0.000000
4) 600.000000 0.000000
5) 500.000000 0.000000
6) 0.000000 0.000000
7) 0.000000 20.689655
8) 0.000000 66.896553
9) 1068.965576 0.000000
10) 0.000000 37.586208
11) 983.928589 0.000000
12) 281.465515 0.000000
13) 475.000000 0.000000
14) 1100.000000 0.000000
15) 328.571442 0.000000
NO. ITERATIONS= 6
RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE
X11 100.000000 0.000000 0.000000
X12 100.000000 0.000001 0.000000
X13 100.000000 0.000000 0.000000
X14 100.000000 0.000002 INFINITY
X15 100.000000 0.000002 INFINITY
X21 60.000000 0.000002 INFINITY
X22 60.000000 31.142859 0.000002
X23 60.000000 0.000002 INFINITY
X24 60.000000 0.000002 INFINITY
X25 60.000000 0.000002 INFINITY
X31 110.000000 0.000000 0.000000
X32 110.000000 0.000002 INFINITY
X33 110.000000 0.000002 INFINITY
X34 110.000000 0.000002 INFINITY
X35 110.000000 INFINITY 0.000000
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
2 3200.000000 200.000000 300.000000
3 3400.000000 200.000000 600.000000
4 800.000000 INFINITY 600.000000
5 500.000000 INFINITY 500.000000
6 600.000000 200.000000 300.000000
7 7400.000000 600.000000 200.000000
8 2200.000000 237.500000 1887.500000
9 1200.000000 INFINITY 1068.965576
10 1000.000000 85.714287 828.571411
11 2000.000000 INFINITY 983.928589
12 2300.000000 INFINITY 281.465515
13 600.000000 INFINITY 475.000000
14 1100.000000 INFINITY 1100.000000
15 500.000000 INFINITY 328.571442
Parcel
Acres
Water irrigation limit (acre-feet)
Southeast
2,000
3,200
North
2,300
3,400
Northwest
600
800
West
1,100
500
Southwest
500
600
Explanation / Answer
LP OPTIMUM FOUND AT STEP 6
OBJECTIVE FUNCTION VALUE
1) 337862.1
VARIABLE VALUE REDUCED COST
X11 187.500000 0.000000
X12 1887.500000 0.000000
X13 125.000000 0.000000
X14 0.000000 0.000000
X15 0.000000 0.000000
X21 0.000000 0.000002
X22 131.034485 0.000000
X23 0.000000 0.000002
X24 0.000000 0.000002
X25 0.000000 0.000002
X31 828.571411 0.000000
X32 0.000000 0.000000
X33 0.000000 0.000000
X34 0.000000 0.000000
X35 171.428574 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.000000
3) 0.000000 0.000000
4) 600.000000 0.000000
5) 500.000000 0.000000
6) 0.000000 0.000000
7) 0.000000 20.689655
8) 0.000000 66.896553
9) 1068.965576 0.000000
10) 0.000000 37.586208
11) 983.928589 0.000000
12) 281.465515 0.000000
13) 475.000000 0.000000
14) 1100.000000 0.000000
15) 328.571442 0.000000
NO. ITERATIONS= 6
RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE
X11 100.000000 0.000000 0.000000
X12 100.000000 0.000001 0.000000
X13 100.000000 0.000000 0.000000
X14 100.000000 0.000002 INFINITY
X15 100.000000 0.000002 INFINITY
X21 60.000000 0.000002 INFINITY
X22 60.000000 31.142859 0.000002
X23 60.000000 0.000002 INFINITY
X24 60.000000 0.000002 INFINITY
X25 60.000000 0.000002 INFINITY
X31 110.000000 0.000000 0.000000
X32 110.000000 0.000002 INFINITY
X33 110.000000 0.000002 INFINITY
X34 110.000000 0.000002 INFINITY
X35 110.000000 INFINITY 0.000000
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
2 3200.000000 200.000000 300.000000
3 3400.000000 200.000000 600.000000
4 800.000000 INFINITY 600.000000
5 500.000000 INFINITY 500.000000
6 600.000000 200.000000 300.000000
7 7400.000000 600.000000 200.000000
8 2200.000000 237.500000 1887.500000
9 1200.000000 INFINITY 1068.965576
10 1000.000000 85.714287 828.571411
11 2000.000000 INFINITY 983.928589
12 2300.000000 INFINITY 281.465515
13 600.000000 INFINITY 475.000000
14 1100.000000 INFINITY 1100.000000
15 500.000000 INFINITY 328.571442
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.