Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using Jupyter Notebook and Python, Numpy, Pandas, sqlite3 as db: import numpy as

ID: 3918860 • Letter: U

Question

Using Jupyter Notebook and Python, Numpy, Pandas, sqlite3 as db:

import numpy as np

import pandas as pd

from pandas import DataFrame, Series
import sqlite3 as dbmight help :

from pandasql import sqldf

Read the following data set:

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
Rename the columns as per the description from this file:
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
Task:
Create a sql db from adult dataset and name it sqladb
1. Select 10 records from the adult sqladb
2. Show me the average hours per week of all men who are working in private sector
3. Show me the frequency table for education, occupation and relationship, separately
4. Are there any people who are married, working in private sector and having a masters
degree
5. What is the average, minimum and maximum age group for people working in
different sectors
6. Calculate age distribution by country
7. Compute a new column as 'Net-Capital-Gain' from the two columns 'capital-gain' and
'capital-loss'

Explanation / Answer

Create DB

sqlite3 sqladb.db

Create Table

CREATE TABLE adult (
age   int,
workclass   varchar(40),
fnlwgt   int,
education   varchar(40),
education_num   int,
marital_status   varchar(40),
occupation   varchar(20),
relationship   varchar(40),
race   varchar(20),
sex   varchar(10),
capital_gain   int,
capital_loss   int,
hours_per_week   int,
native_country   varchar(50),
label    varchar(10))

1) SELECT * FROM adult LIMIT 10;

2)

SELECT AVG(hours_per_week)

FROM adult

WHERE workclass =' Private' and sex=' Male';

OUTPUT: 42

3)

4) SELECT * FROM adult

WHERE

OUTPUT: 234 people

5)

SELECT AVG(age) Average ,MIN(age) Minimum ,MAX(age) Maximum,workclass

FROM adult GROUP BY

OUTPUT:

47   19   72   Without-pay
44   17   90   Self-emp-not-inc
36   17   90   Private
46   17   84   Self-emp-inc
39   17   81   State-gov
42   17   90   Federal-gov
20   17   30   Never-worked
41   17   90   Local-gov
40   17   90   ?

6)

SELECT  AVG(age) Average ,MIN(age) Minimum ,MAX(age) Maximum,native_country

FROM adult GROUP BY native_country

OUTPUT:

Average   Minimum   Maximum   native_country
35   18   66   Jamaica
38   21   63   Outlying-US(Guam-USVI-etc)
34   19   56   Laos
39   18   74   Germany
38   17   90   United-States
37   18   65   Cambodia
39   18   75   Columbia
38   17   61   India
42   22   75   China
43   17   85   Poland
36   23   68   Ireland
39   17   90   Philippines
40   18   62   Scotland
33   19   67   Nicaragua
33   17   81   Mexico
36   21   90   Ecuador
41   17   61   Trinadad&Tobago
33   19   60   Hong
33   18   58   Honduras
38   20   66   Yugoslavia
38   19   90   South
32   32   32   Holand-Netherlands
49   24   81   Hungary
46   22   65   Greece
34   19   73   Vietnam
40   19   78   Portugal
34   19   55   Thailand
41   17   90   England
46   19   77   Italy
34   17   79   El-Salvador
38   17   63   Haiti
32   19   66   Guatemala
35   17   69   Peru
33   20   61   Taiwan
38   19   61   Japan
38   20   64   France
42   17   80   Canada
40   17   90   Puerto-Rico
39   22   63   Iran
37   18   78   Dominican-Republic
45   21   82   Cuba
38   17   90   ?

7) SELECT * ,(capital_gain - capital_loss) 'Net-Capital-Gain' FROM adult

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote