Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

java package ch11.sorts; import java.util.*; import java.text.DecimalFormat; pub

ID: 3917045 • Letter: J

Question

java

package ch11.sorts;

import java.util.*;
import java.text.DecimalFormat;

public class Sorts
{
static final int SIZE = 50; // size of array to be sorted
static int[] values = new int[SIZE]; // values to be sorted

static void initValues()
// Initializes the values array with random integers from 0 to 99.
{
Random rand = new Random();
for (int index = 0; index < SIZE; index++)
values[index] = Math.abs(rand.nextInt()) % 100;
}

static public boolean isSorted()
// Returns true if the array values are sorted and false otherwise.
{
for (int index = 0; index < (SIZE - 1); index++)
if (values[index] > values[index + 1])
return false;
return true;
}

static public void swap(int index1, int index2)
// Precondition: index1 and index2 are >= 0 and < SIZE.
//
// Swaps the integers at locations index1 and index2 of the values array.
{
int temp = values[index1];
values[index1] = values[index2];
values[index2] = temp;
}

static public void printValues()
// Prints all the values integers.
{
int value;
DecimalFormat fmt = new DecimalFormat("00");
System.out.println("The values array is:");
for (int index = 0; index < SIZE; index++)
{
value = values[index];
if (((index + 1) % 10) == 0)
System.out.println(fmt.format(value));
else
System.out.print(fmt.format(value) + " ");
}
System.out.println();
}


/////////////////////////////////////////////////////////////////
//
// Selection Sort

static int minIndex(int startIndex, int endIndex)
// Returns the index of the smallest value in
// values[startIndex]..values[endIndex].
{
int indexOfMin = startIndex;
for (int index = startIndex + 1; index <= endIndex; index++)
if (values[index] < values[indexOfMin])
indexOfMin = index;
return indexOfMin;
}

static void selectionSort()
// Sorts the values array using the selection sort algorithm.
{
int endIndex = SIZE - 1;
for (int current = 0; current < endIndex; current++)
swap(current, minIndex(current, endIndex));
}


/////////////////////////////////////////////////////////////////
//
// Bubble Sort

static void bubbleUp(int startIndex, int endIndex)
// Switches adjacent pairs that are out of order
// between values[startIndex]..values[endIndex]
// beginning at values[endIndex].
{
for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index - 1])
swap(index, index - 1);
}

static void bubbleSort()
// Sorts the values array using the bubble sort algorithm.
{
int current = 0;

while (current < (SIZE - 1))
{
bubbleUp(current, SIZE - 1);
current++;
}
}


/////////////////////////////////////////////////////////////////
//
// Short Bubble Sort

static boolean bubbleUp2(int startIndex, int endIndex)
// Switches adjacent pairs that are out of order
// between values[startIndex]..values[endIndex]
// beginning at values[endIndex].
//
// Returns false if a swap was made; otherwise, returns true.
{
boolean sorted = true;
for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index - 1])
{
swap(index, index - 1);
sorted = false;
}
return sorted;
}

static void shortBubble()
// Sorts the values array using the bubble sort algorithm.
// The process stops as soon as values is sorted.
{
int current = 0;
boolean sorted = false;
while ((current < (SIZE - 1)) && !sorted)
{
sorted = bubbleUp2(current, SIZE - 1);
current++;
}
}


/////////////////////////////////////////////////////////////////
//
// Insertion Sort

static void insertItem(int startIndex, int endIndex)
// Upon completion, values[0]..values[endIndex] are sorted.
{
boolean finished = false;
int current = endIndex;
boolean moreToSearch = true;
while (moreToSearch && !finished)
{
if (values[current] < values[current - 1])
{
swap(current, current - 1);
current--;
moreToSearch = (current != startIndex);
}
else
finished = true;
}
}

static void insertionSort()
// Sorts the values array using the insertion sort algorithm.
{
for (int count = 1; count < SIZE; count++)
insertItem(0, count);
}


/////////////////////////////////////////////////////////////////
//
// Merge Sort

static void merge (int leftFirst, int leftLast, int rightFirst, int rightLast)
// Preconditions: values[leftFirst]..values[leftLast] are sorted.
// values[rightFirst]..values[rightLast] are sorted.
//
// Sorts values[leftFirst]..values[rightLast] by merging the two subarrays.
{
int[] tempArray = new int [SIZE];
int index = leftFirst;
int saveFirst = leftFirst; // to remember where to copy back

while ((leftFirst <= leftLast) && (rightFirst <= rightLast))
{
if (values[leftFirst] < values[rightFirst])
{
tempArray[index] = values[leftFirst];
leftFirst++;
}
else
{
tempArray[index] = values[rightFirst];
rightFirst++;
}
index++;
}

while (leftFirst <= leftLast)
// Copy remaining items from left half.

{
tempArray[index] = values[leftFirst];
leftFirst++;
index++;
}

while (rightFirst <= rightLast)
// Copy remaining items from right half.
{
tempArray[index] = values[rightFirst];
rightFirst++;
index++;
}

for (index = saveFirst; index <= rightLast; index++)
values[index] = tempArray[index];
}

static void mergeSort(int first, int last)
// Sorts the values array using the merge sort algorithm.
{
if (first < last)
{
int middle = (first + last) / 2;
mergeSort(first, middle);
mergeSort(middle + 1, last);
merge(first, middle, middle + 1, last);
}
}


/////////////////////////////////////////////////////////////////
//
// Quick Sort

static int split(int first, int last)
{
int splitVal = values[first];
int saveF = first;
boolean onCorrectSide;

first++;
do
{
> while (onCorrectSide) // move first toward last
if (values[first] > splitVal)
> else
{
first++;
<= last);
}

<= last);
while (onCorrectSide) // move last toward first
if (values[last] <= splitVal)
> else
{
last--;
<= last);
}

if (first < last)   
{
swap(first, last);
first++;
last--;
}
} while (first <= last);

swap(saveF, last);
return last;
}

static void quickSort(int first, int last)
{
if (first < last)
{
int splitPoint;

splitPoint = split(first, last);
// values[first]..values[splitPoint - 1] <= splitVal
// values[splitPoint] = splitVal
// values[splitPoint+1]..values[last] > splitVal

quickSort(first, splitPoint - 1);
quickSort(splitPoint + 1, last);
}
}


/////////////////////////////////////////////////////////////////
//
// Heap Sort

static int newHole(int hole, int lastIndex, int item)
// If either child of hole is larger than item this returns the index
// of the larger child; otherwise it returns the index of hole.
{
int left = (hole * 2) + 1;
int right = (hole * 2) + 2;
if (left > lastIndex)
// hole has no children
return hole;
else
if (left == lastIndex)
// hole has left child only
if (item < values[left])
// item < left child
return left;
else
// item >= left child
return hole;
else
// hole has two children
if (values[left] < values[right])
// left child < right child
if (values[right] <= item)
// right child <= item
return hole;
else
// item < right child
return right;
else
// left child >= right child
if (values[left] <= item)
// left child <= item
return hole;
else
// item < left child
return left;
}

static void reheapDown(int item, int root, int lastIndex)
// Precondition: Current root position is "empty".
//
// Inserts item into the tree and ensures shape and order properties.
{
int hole = root; // current index of hole
int newhole; // index where hole should move to

newhole = newHole(hole, lastIndex, item); // find next hole
while (newhole != hole)
{
values[hole] = values[newhole]; // move value up
hole = newhole; // move hole down
newhole = newHole(hole, lastIndex, item); // find next hole
}
values[hole] = item; // fill in the final hole
}

static void heapSort()
// Sorts the values array using the heap sort algorithm.
{
int index;
// Convert the array of values into a heap.
for (index = SIZE/2 - 1; index >= 0; index--)
reheapDown(values[index], index, SIZE - 1);

// Sort the array.
for (index = SIZE - 1; index >=1; index--)
{
swap(0, index);
reheapDown(values[0], 0, index - 1);
}
}

/////////////////////////////////////////////////////////////////
//
// Main

public static void main(String[] args)
{
initValues();
printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();
  
// make call to sorting method here (just remove //)
// selectionSort();
// bubbleSort();
// shortBubble();
// insertionSort();
// mergeSort(0, SIZE - 1);
// quickSort(0, SIZE - 1);
// heapSort();

printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();
}
}

Sorts.java is a test harness program for testing various sorting methods. The program includes a swap method that is used by all of the sorting methods to swap array elements a) Modify the program so that after calling a sorting method the program prints out the number of swaps required to sort an array of 50 random integers b) Test the modified program by running the selectionSort, bubbleSorit, shortBubble, insertionSort, mergeSort, heapSort,and quickSort c) Modify the program so that after calling a sorting method the program prints out the number of comparisons required to sort an array of 50 random integers d) Test the modified program by running the selectionSort, bubbleSort, shortBubble, insertionSort, mergeSort, heapSort, and quickSort e) In order to run the program just once, a backupValues array can be used in the initValues method. Use it to save all of the random numbers assigned to the values array. Then, create a resetValues method to reset the values array back to the original values by using the backupValues array each time you call one of the sorting methods. Of course, the backup array doesn't need to be reset for the first call to a sort-just the subsequent calls to the other sorts, because you need to start with the original unsorted array. Here is a sample output: Initial Array The values array is: 88 49 69 19 03 54 57 83 42 48 92 72 78 10 08 13 46 29 73 9e 30 44 80 74 66 60 79 36 05 63 09 97 62 60 21 51 63 83 87 22 08 18 48 41 38 22 58 99 19 94 0 swaps. comparisons. SelectionSort The values array is: 03 05 08 08 09 10 13 18 19 19 21 22 22 29 30 36 38 41 42 44 46 48 48 49 51 54 57 58 60 60 62 63 63 66 69 72 73 74 78 79 80 83 83 87 88 90 92 94 97 99 49 swaps 1225 comparisons. BubbleSort The values array is: 03 05 08 08 09 10 13 18 19 19 21 22 22 29 30 36 38 41 42 44 46 48 48 49 51 54 57 58 60 60 62 63 63 66 69 72 73 74 78 79 80 83 83 87 88 90 92 94 97 99 621 swaps 1225 comparisons.

Explanation / Answer

PROGRAM IN JAVA:

import java.util.*;

import java.text.DecimalFormat;

public class Sorts

{

   static final int SIZE = 50; // size of array to be sorted

   static int[] values = new int[SIZE]; // values to be sorted

   static int swap = 0;

   static int comparison = 0;

   static void initValues()

   // Initializes the values array with random integers from 0 to 99.

   {

       Random rand = new Random();

       for (int index = 0; index < SIZE; index++)

           values[index] = Math.abs(rand.nextInt()) % 100;

   }

   static public boolean isSorted()

   // Returns true if the array values are sorted and false otherwise.

   {

       boolean sorted = true;

       for (int index = 0; index < (SIZE - 1); index++)

           if (values[index] > values[index + 1])

               sorted = false;

       return sorted;

   }

   static public void swap(int index1, int index2)

   // Precondition: index1 and index2 are >= 0 and < SIZE.

   //

   // Swaps the integers at locations index1 and index2 of the values array.

   {

       swap++;

       int temp = values[index1];

       values[index1] = values[index2];

       values[index2] = temp;

   }

   static public void printValues()

   // Prints all the values integers.

   {

       int value;

       DecimalFormat fmt = new DecimalFormat("00");

       System.out.println("The values array is:");

       for (int index = 0; index < SIZE; index++)

       {

           value = values[index];

           if (((index + 1) % 10) == 0)

               System.out.println(fmt.format(value));

           else

               System.out.print(fmt.format(value) + " ");

       }

       System.out.println();

   }

   /////////////////////////////////////////////////////////////////

   //

   // Selection Sort

   static int minIndex(int startIndex, int endIndex)

   // Returns the index of the smallest value in

   // values[startIndex]..values[endIndex].

   {

       int indexOfMin = startIndex;

       for (int index = startIndex + 1; index <= endIndex; index++){

           comparison++;

           if (values[index] < values[indexOfMin])

               indexOfMin = index;

       }

       return indexOfMin;

   }

   static void selectionSort()

   // Sorts the values array using the selection sort algorithm.

   {

       int endIndex = SIZE - 1;

       for (int current = 0; current < endIndex; current++)

           swap(current, minIndex(current, endIndex));

   }

   /////////////////////////////////////////////////////////////////

   //

   // Bubble Sort

   static void bubbleUp(int startIndex, int endIndex)

   // Switches adjacent pairs that are out of order

   // between values[startIndex]..values[endIndex]

   // beginning at values[endIndex].

   {

       for (int index = endIndex; index > startIndex; index--){

           comparison++;

           if (values[index] < values[index - 1])

               swap(index, index - 1);

       }

   }

   static void bubbleSort()

   // Sorts the values array using the bubble sort algorithm.

   {

       int current = 0;

       while (current < (SIZE - 1))

       {

           bubbleUp(current, SIZE - 1);

           current++;

       }

   }

   /////////////////////////////////////////////////////////////////

   //

   // Short Bubble Sort

   static boolean bubbleUp2(int startIndex, int endIndex)

   // Switches adjacent pairs that are out of order

   // between values[startIndex]..values[endIndex]

   // beginning at values[endIndex].

   //

   // Returns false if a swap was made; otherwise, returns true.

   {

       boolean sorted = true;

       for (int index = endIndex; index > startIndex; index--){

           comparison++;

           if (values[index] < values[index - 1])

           {

               swap(index, index - 1);

               sorted = false;

           }

       }

       return sorted;

   }

   static void shortBubble()

   // Sorts the values array using the bubble sort algorithm.

   // The process stops as soon as values is sorted.

   {

       int current = 0;

       boolean sorted = false;

       while ((current < (SIZE - 1)) && !sorted)

       {

           sorted = bubbleUp2(current, SIZE - 1);

           current++;

       }

   }

   /////////////////////////////////////////////////////////////////

   //

   // Insertion Sort

   static void insertItem(int startIndex, int endIndex)

   // Upon completion, values[0]..values[endIndex] are sorted.

   {

       boolean finished = false;

       int current = endIndex;

       boolean moreToSearch = true;

       while (moreToSearch && !finished)

       {

           comparison++;

           if (values[current] < values[current - 1])

           {

               swap(current, current - 1);

               current--;

               moreToSearch = (current != startIndex);

           }

           else

               finished = true;

       }

   }

   static void insertionSort()

   // Sorts the values array using the insertion sort algorithm.

   {

       for (int count = 1; count < SIZE; count++)

           insertItem(0, count);

   }

   /////////////////////////////////////////////////////////////////

   //

   // Merge Sort

   static void merge (int leftFirst, int leftLast, int rightFirst, int rightLast)

   // Preconditions: values[leftFirst]..values[leftLast] are sorted.

   // values[rightFirst]..values[rightLast] are sorted.

   //

   // Sorts values[leftFirst]..values[rightLast] by merging the two subarrays.

   {

       int[] tempArray = new int [SIZE];

       int index = leftFirst;

       int saveFirst = leftFirst; // to remember where to copy back

       while ((leftFirst <= leftLast) && (rightFirst <= rightLast))

       {

           comparison++;

           if (values[leftFirst] < values[rightFirst])

           {

               tempArray[index] = values[leftFirst];

               leftFirst++;

           }

           else

           {

               tempArray[index] = values[rightFirst];

               rightFirst++;

           }

           index++;

       }

       while (leftFirst <= leftLast)

           // Copy remaining items from left half.

       {

           tempArray[index] = values[leftFirst];

           leftFirst++;

           index++;

       }

       while (rightFirst <= rightLast)

           // Copy remaining items from right half.

       {

           tempArray[index] = values[rightFirst];

           rightFirst++;

           index++;

       }

       for (index = saveFirst; index <= rightLast; index++)

           values[index] = tempArray[index];

   }

   static void mergeSort(int first, int last)

   // Sorts the values array using the merge sort algorithm.

   {

       comparison++;

       if (first < last)

       {

           int middle = (first + last) / 2;

           mergeSort(first, middle);

           mergeSort(middle + 1, last);

           merge(first, middle, middle + 1, last);

       }

   }

   /////////////////////////////////////////////////////////////////

   //

   // Quick Sort

   static int split(int first, int last)

   {

       int splitVal = values[first];

       int saveF = first;

       boolean onCorrectSide;

       first++;

       do

       {

          >

           while (onCorrectSide){ // move first toward last

               comparison++;

               if (values[first] > splitVal)

                  >

               else

               {

                   first++;

                   <= last);

               }

           }

           <= last);

           while (onCorrectSide) { // move last toward first

               comparison++;

               if (values[last] <= splitVal)

                  >

               else

               {

                   last--;

                   <= last);

               }

           }

           comparison++;

           if (first < last)

           {

               swap(first, last);

               first++;

               last--;

           }

       } while (first <= last);

       swap(saveF, last);

       return last;

   }

   static void quickSort(int first, int last)

   {

       comparison++;

       if (first < last)

       {

           int splitPoint;

           splitPoint = split(first, last);

           // values[first]..values[splitPoint - 1] <= splitVal

           // values[splitPoint] = splitVal

           // values[splitPoint+1]..values[last] > splitVal

           quickSort(first, splitPoint - 1);

           quickSort(splitPoint + 1, last);

       }

   }

   /////////////////////////////////////////////////////////////////

   //

   // Heap Sort

   static int newHole(int hole, int lastIndex, int item)

   // If either child of hole is larger than item this returns the index

   // of the larger child; otherwise it returns the index of hole.

   {

       int left = (hole * 2) + 1;

       int right = (hole * 2) + 2;

       comparison++;

       if (left > lastIndex)

           // hole has no children

           return hole;

       else{

           comparison++;

           if (left == lastIndex){

               comparison++;

               // hole has left child only

               if (item < values[left])

                   // item < left child

                   return left;

               else

                   // item >= left child

                   return hole;

           }

           else{

               comparison++;

               // hole has two children

               if (values[left] < values[right]){

                   comparison++;

                   // left child < right child

                   if (values[right] <= item)

                       // right child <= item

                       return hole;

                   else

                       // item < right child

                       return right;

               }

               else{

                   comparison++;

                   // left child >= right child

                   if (values[left] <= item)

                       // left child <= item

                       return hole;

                   else

                       // item < left child

                       return left;

               }

           }

       }

   }

   static void reheapDown(int item, int root, int lastIndex)

   // Precondition: Current root position is "empty".

   //

   // Inserts item into the tree and ensures shape and order properties.

   {

       int hole = root; // current index of hole

       int newhole; // index where hole should move to

       newhole = newHole(hole, lastIndex, item); // find next hole

       while (newhole != hole)

       {

           values[hole] = values[newhole]; // move value up

           hole = newhole; // move hole down

           newhole = newHole(hole, lastIndex, item); // find next hole

       }

       values[hole] = item; // fill in the final hole

   }

   static void heapSort()

   // Sorts the values array using the heap sort algorithm.

   {

       int index;

       // Convert the array of values into a heap.

       for (index = SIZE/2 - 1; index >= 0; index--)

           reheapDown(values[index], index, SIZE - 1);

       // Sort the array.

       for (index = SIZE - 1; index >=1; index--)

       {

           swap(0, index);

           reheapDown(values[0], 0, index - 1);

       }

   }

   /////////////////////////////////////////////////////////////////

   //

   // Main

   public static void main(String[] args)

   {

       initValues();

       printValues();

       System.out.println("values is sorted: " + isSorted());

       System.out.println();

       // make call to sorting method here (just remove //)

       Sorts.comparison = 0;

       Sorts.swap = 0;

       selectionSort();

      

       System.out.println("Number of comparisons: "+Sorts.comparison);

       System.out.println("Number of swaps: "+Sorts.swap);

      

       // reseting to zero

       Sorts.comparison = 0;

       Sorts.swap = 0;

       // bubbleSort();

       // shortBubble();

       // insertionSort();

       // mergeSort(0, SIZE - 1);

       // quickSort(0, SIZE - 1);

       // heapSort();

       printValues();

       System.out.println("values is sorted: " + isSorted());

       System.out.println();

   }

}

/*

Sample run:

The values array is:

20 38 95 71 18 29 57 80 97 87

15 38 64 81 69 19 17 31 81 18

03 74 37 87 52 27 56 53 33 65

23 22 87 46 55 69 70 56 32 29

49 64 82 35 17 96 74 38 92 65

values is sorted: false

Number of comparisons: 1225

Number of swaps: 49

The values array is:

03 15 17 17 18 18 19 20 22 23

27 29 29 31 32 33 35 37 38 38

38 46 49 52 53 55 56 56 57 64

64 65 65 69 69 70 71 74 74 80

81 81 82 87 87 87 92 95 96 97

values is sorted: true

*/