Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Add suitable code to the code below and then run it Run the provided code first,

ID: 3915074 • Letter: A

Question

Add suitable code to the code below and then run it

Run the provided code first, to load the required function and data into memory, then do the calculation in the interactive Python shell.

Feel free to choose the approach you prefer.

Figure 1 charts data about the highest points, i.e. the points with the highest altitudes above sea level, in each of 56 European countries (Wikipedia, 2017).

Give the median, correct to the nearest whole number. Also copy and paste the Python code you used and briefly (in one or two sentences) explain how you ran it.

For this list of data the mean is 2185, which is smaller than the median. From looking at Figure 1 briefly suggest a possible reason.

-----------------------------------------------------------------------------------------
INITIAL CODE
-----------------------------------------------------------------------------------------

Heighest point of 56 European countries, in metres.
08/10/2017
"""

from data_stats import median

heights = [2764,2942,3798,4466,345,694,2386,2925,1831,1952,1603,3694,171,318,1324,4810,5201,2962,2919,1014,2110,4810,2658,2656,312,2599,294,560,253,430,163,2534,887,321,2469,2499,2351,1993,1041,2764,2544,5642,749,2169,2655,2864,3718,3479,2104,4634,347,5137,1031,2061,1344,75]

""" You can use one of two approaches
-- add suitable code below and then run this file
-- run this file first then do the calculation in the Python
interactive shell.
"""

----------------------------------------------------

PROVIDED CODE
----------------------------------------------------

import math

def median(alist):
""" Calculates the median of a list of numbers.
The list must not be empty.
"""

number_of_values = len(alist)
sorted_list = sorted(alist)

# Two cases, depending on whether the number of values is odd or even.
quotient = number_of_values // 2
remainder = number_of_values % 2

if (remainder == 1):
result = sorted_list[quotient]
else:
result = (sorted_list[quotient - 1] + sorted_list[quotient]) / 2
return result
  
  
def test_median():
assert median([2]) == 2
assert median([4, 3]) == 3.5
assert median([3, 1, 8, 4, 7, 6, 4, 2, 5, 9]) == 4.5
assert median([7, 2, 6, 2, 5, 3, 1, 0, 8, 6, 6, 4, 9]) == 5

# Unit test
test_median()

def mean(list):
"""Return mean of list"""
sum = 0
count = 0
for item in list:
sum = sum + item
count = count + 1
return sum / count

def test_mean():
list = [1, 2, 3, 4, 5]
assert(mean(list) == 3)
  
# Unit test
test_mean()

def corr_coef(list_x, list_y):
""" Return correlation between values in list_x and list_y.

Lists must be of equal length.
  
"""
  
x_bar = mean(list_x)
y_bar = mean(list_y)
sxy = 0
sxx = 0
syy = 0
for index in range(len(list_x)):
x = list_x[index]
y = list_y[index]
sxy = sxy + (x - x_bar) * (y - y_bar)
sxx = sxx + (x - x_bar) * (x - x_bar)
syy = syy + (y - y_bar) * (y - y_bar)
return sxy / math.sqrt(sxx * syy)

def test_corr_coef():
# Data from M140 Unit 9 Example 5
list1 = [78.9, 75.8, 77.3, 74.2, 78.1, 72.8, 77.6, 77.9]
list2 = [56.7, 53.1, 56.1, 55.9, 54.1, 48.6, 59.4, 54.0]
assert round(corr_coef(list1, list2), 2) == 0.64
  
# Unit test
test_corr_coef()

Number of countries 0-499 500-999 1000-1499 1500-1999 2000-2499 2500-2999 3000-3499 3500-3999 4000-4499 4500-4999 5000-5499 5500-5999

Explanation / Answer

here is your code and instruction : ------------>>>>>>>>>>>>

import math
def median(alist):
    """ Calculates the median of a list of numbers.
    The list must not be empty.
    """
    number_of_values = len(alist)
    sorted_list = sorted(alist)
    # Two cases, depending on whether the number of values is odd or even.
    quotient = number_of_values // 2
    remainder = number_of_values % 2
    if (remainder == 1):
        result = sorted_list[quotient]
    else:
        result = (sorted_list[quotient - 1] + sorted_list[quotient]) / 2
    return result

def test_median():
    assert median([2]) == 2
    assert median([4, 3]) == 3.5
    assert median([3, 1, 8, 4, 7, 6, 4, 2, 5, 9]) == 4.5
    assert median([7, 2, 6, 2, 5, 3, 1, 0, 8, 6, 6, 4, 9]) == 5
# Unit test
test_median()
def mean(list):
    """Return mean of list"""
    sum = 0
    count = 0
    for item in list:
        sum = sum + item
        count = count + 1
    return sum / count
def test_mean():
    list = [1, 2, 3, 4, 5]
    assert(mean(list) == 3)
   
# Unit test
test_mean()
def corr_coef(list_x, list_y):
    """ Return correlation between values in list_x and list_y.
    Lists must be of equal length.
    """
    x_bar = mean(list_x)
    y_bar = mean(list_y)
    sxy = 0
    sxx = 0
    syy = 0
    for index in range(len(list_x)):
        x = list_x[index]
        y = list_y[index]
        sxy = sxy + (x - x_bar) * (y - y_bar)
        sxx = sxx + (x - x_bar) * (x - x_bar)
        syy = syy + (y - y_bar) * (y - y_bar)
    return sxy / math.sqrt(sxx * syy)
def test_corr_coef():
    # Data from M140 Unit 9 Example 5
    list1 = [78.9, 75.8, 77.3, 74.2, 78.1, 72.8, 77.6, 77.9]
    list2 = [56.7, 53.1, 56.1, 55.9, 54.1, 48.6, 59.4, 54.0]
    assert round(corr_coef(list1, list2), 2) == 0.64
   
# Unit test
test_corr_coef()

#to run the simulation of your question do below thing
#first run above code from your editor menu
#then go to the shell and write below given code
#for median

#below code is like a list variable declaration
heights = [2764,2942,3798,4466,345,694,2386,2925,1831,1952,1603,3694,171,318,1324,4810,5201,2962,2919,1014,2110,4810,2658,2656,312,2599,294,560,253,430,163,2534,887,321,2469,2499,2351,1993,1041,2764,2544,5642,749,2169,2655,2864,3718,3479,2104,4634,347,5137,1031,2061,1344,75]
print(median(heights))
#press enter it will give you the median
#for mean write below code
print(mean(heights))
#and press enter it will give the mean

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote