Use Rstudio thanks Q3 [3 points] 1. Calculate 3= 1 4-143-1 y+z 3 points] 2. Use
ID: 3879868 • Letter: U
Question
Use Rstudio thanks
Q3 [3 points] 1. Calculate 3= 1 4-143-1 y+z 3 points] 2. Use R to find all the prime numbers between 20 and 50. (Prime numbers: can be divided evenly only by 1 or itself.) [4 points] 3. Create a function that returns the elements on odd positions in a vector 4 points] 3. Create a Input: a vector Output: a vector of the elements only on odd positions Use the vector in your first question as an example and show the results. (5 points] 4. Create a function to calculate the confidence intervals. This function should be able to handle small data sets (n = 30 using normal distribution). Input: a data set; alpha (confidence level) Output: confidence interval (lower boundary and upper boundary) Given the following sample data of battery life: 491, 485, 503, 492, 482, 487, 490, 485, 495, 502 calculate the 95% confidence interval of the mean battery life.Explanation / Answer
CODE TO COPY
1) Calculate the value of expression
value = 0 # value to store sum
for(i in 1:3){ # Z loop
for(j in 1:4){ # y loop
for(k in 1:j){ # x loop
value = value + exp(k)/(i+j) # expression sloving and updating value
}
}
}
print(value)
2) Print prime numbers between 20 to 50
is.prime <- function(n) n == 2L || all(n %% 2L:ceiling(sqrt(n)) != 0) # prime number checker function
for(i in 20:50){ # running loop from 20 to 50
if(is.prime(i)){ # check if number is prime
print(i)
}
}
3) Function that returns odd position elements
odd.position <- function(vector) { #function declaration
i=1
while(i<=length(vector)){ #looping till the length of the vector
print(i) # printing the value
i = i+2 # incrementing the loop index by 2.
}
}
4) Function that returns confidence intervals
confidence.intervals <- function(data,alpha){
n = length(data) ## size of the data
mean = mean(data) ## mean of the data
alpha = alpha/100 ## confidenece level
sd = sd(data) ## standard deviation of data
error=0
if(n >= 30){ ## normal distribution
error = qnorm(alpha+0.025)*sd/sqrt(n) # standard error
}
else{ ## t distribution
error = qt(alpha+0.025,df=n-1)*sd/sqrt(n) # standard error
}
left = mean - error # lower bound of interval
right = mean + error # upper bound of interval
res = c(left,right)
print(res)
}
confidence.intervals(c(491,485,503,492,482,487,490,485,495,502),95)
If you have any doubts about my answer, please let me know in the comments so that i can help.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.