Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In Figure 1.6 we show how to convert a decimal number into binary by successivel

ID: 3877177 • Letter: I

Question

In Figure 1.6 we show how to convert a decimal number into binary by successively dividing by 2. Another way to derive the same answer is to construct the number by using powers of 2. For example, if we wish to convert the number (23)o, then the largest power of 2 that is not larger than 23 is 24-16. Hence, the binary number will have five bits and the most-significant bit is ba-1. We then perform the subtraction 23-16-7. Now, the largest power of 2 that is not larger than 7 is 2-4. Hence, ba-0 (because 2-8 is larger than 7) and bi 1. Continuing this process gives . 23-16+4+2+1 24+22+21+20 = 10000+00100+00010+00001 =10111 Using this method, convert the following decimal numbers into binary. (a) 8 bit-(93)10 (b) 8 bit - (121ho (c) 16 bit -(506)10 (d) 16 bit - (740)10 (e) 16 bit (11721o (f) 16 bit (4415)10

Explanation / Answer

// sorry for the poor formatting.
// the chegg editor works different from ms word.
// plz paste this in any word processing tools such as ms word or libre office.
// plz comment if you need any clarification.


Before solving these questions, lets get some basic knowledge on binary numbers,

            Powers of 2 in decimal system are, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 …. And so on.

            When we convert any decimal number to binary, we should find one of the above numbers which is, the largest number that is less than the given decimal number. After that we can start converting the number in to binary by doing simple subtractions and repeating the above technique again and again.

a)     Given number : (93)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 93 is 64, so

            93 = 64 + (93-64)

=> = 64 + 29

=> = 64 + 16 + (29 - 16)

=> = 64 + 16 + 13

=> = 64 + 16 + 8 + (13 - 8)

=> = 64 + 16 + 8 + 5

=> = 64 + 16 + 8 + 4 + 1

So the binary number would be,

            0100 0000    is 64

            0001 0000    is 16

            0000 1000    is 8

            0000 0100    is 4

   0000 0001    is 1
-------------------------------------------------------

            0101 1101    is 93

b)    Given number : (121)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 121 is 64, so

            121 = 64 + (121-64)

=> = 64 + 57

=>   = 64 + 32 + (57 - 32)

=>   = 64 + 32 + 25

=>   = 64 + 32 + 16 + (25 - 16)

=>   = 64 + 32 + 16 + 9

=>   = 64 + 32 + 16 + 8 + 1

So the binary number would be,

            0100 0000    is 64

            0010 0000    is 32

            0001 0000    is 16

            0000 1000    is 8

   0000 0001    is 1
----------------------------------------------------

            0111 1001    is 121

c)     Given number : (506)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 506 is 256, so

            506 = 256 + (506-256)

=>   = 256 + 250

=>   = 256 + 128 + (250 - 128)

=>   = 256 + 128 + 122

=>   = 256 + 128 + 64 + (122 - 64)

=>   = 256 + 128 + 64 + 58

=>   = 256 + 128 + 64 + 32 + (58 - 32)

=>   = 256 + 128 + 64 + 32 + 26

=>   = 256 + 128 + 64 + 32 + 16 + (26 - 16)

=>   = 256 + 128 + 64 + 32 + 16 + 10

=>   = 256 + 128 + 64 + 32 + 16 + 8 + (10 - 8)

=>   = 256 + 128 + 64 + 32 + 16 + 8 + 2

So the binary number would be,

0000 0001 0000 0000    is 256

0000 0000 1000 0000    is 128

0000 0000 0100 0000    is 64

            0000 0000 0010 0000    is 32

            0000 0000 0001 0000    is 16

            0000 0000 0000 1000    is 8

   0000 0000 0000 0010    is 2
-----------------------------------------------------------

            0000 0001 1111 1010    is 506

d)    Given number : (740)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 740 is 512, so

            740 = 512 + (740 - 512)

=>   = 512 + 228

=>   = 512 + 128 + (228 - 128)

=>   = 512 + 128 + 100

=>   = 512 + 128 + 64 + (100 - 64)

=>   = 512 + 128 + 64 + 36

=>   = 512 + 128 + 64 + 32 + (36 - 32)

=>   = 512 + 128 + 64 + 32 + 4

So the binary number would be,

0000 0010 0000 0000    is 512

0000 0000 1000 0000    is 128

0000 0000 0100 0000    is 64

            0000 0000 0010 0000    is 32

   0000 0000 0000 0100    is 8
---------------------------------------------------------

            0000 0010 1110 0100    is 740

e)     Given number : (1172)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 1172 is 1024, so

1172 = 1024 + (1172 - 1024)

=>   = 1024 + 148

=>   = 1024 + 128 + (148 - 128)

=>   = 1024 + 128 + 20

=>   = 1024 + 128 + 16 + (20 - 16)

=>   = 1024 + 128 + 16 + 4

So the binary number would be,

0000 0100 0000 0000    is 1024

0000 0000 1000 0000    is 128

            0000 0000 0001 0000    is 16

   0000 0000 0000 0100    is 4
-----------------------------------------------------

            0000 0100 1001 0100    is 1172

f)      Given number : (4415)10

This number can be written in sum of powers of two as follows,

            Highest Power of 2 less than 4415 is 4098, so

            4415 = 4098 + (4415 - 4098)

=>   = 4096 + 319

=>   = 4098 + 256 + (319 - 256)

=>   = 4098 + 256 + 63

=>   = 4098 + 256 + 32 + (63 - 32)

=>   = 4098 + 256 + 32 + 31

=>   = 4098 + 256 + 32 + 16 + (31 - 16)

=>   = 4098 + 256 + 32 + 16 + 15

=>   = 4098 + 256 + 32 + 16 + 8 + (14 - 8)

=>   = 4098 + 256 + 32 + 16 + 8 + 7

=>   = 4098 + 256 + 32 + 16 + 8 + 4 + 2 + 1

So the binary number would be,

0001 0000 0000 0000    is 4096

0000 0001 0000 0000    is 256

            0000 0000 0010 0000    is 32

            0000 0000 0001 0000    is 16

            0000 0000 0000 1000    is 8

            0000 0000 0000 0100    is 4

            0000 0000 0000 0010    is 2

   0000 0000 0000 0001    is 1
-------------------------------------------------------

            0001 0001 0011 1111    is 4415

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote