Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. At most, how many comparisons are required to search a sorted vector of 1023

ID: 3874076 • Letter: 1

Question

1.    At most, how many comparisons are required to search a sorted vector of 1023 elements using the binary search algorithm?

      (a) 10           (b) 8                      (c) 7                (d) 9

2.    The right array in the partition algorithm of the merge sort that sorting n elements consists of __________ elements.

      (a) floor of n/2 (b) ceil of n/2      (c) floor of n   (d) ceil of n

3.    A list implementation of a graph might use an array of linked lists, each list containing all the ________ a vertex.

paths containing                 (b) vertices adjacent to

edges adjacent to                  (d) trees containing

4.    (T/F) The linear search has asymptotic running time of order n.

Time complexities of three algorithms are given. Which should execute the slowest for large values of N?

(a) O(N1/2)                                            (b) O(N)

(c) O(log N)                                          (d) None of these

How many multiplications do you need to compute 2100 using square and multiply algorithm?

(a) 99                                          (b) 100

(c) 8                                          (d) None of these

(T/F) The running time of the PerfixAverage2 algorithm is linear function.

Where f is a function, O(f (n)) means _______ f (n).

   (a) Exactly;                                           (b) at most;   

   (c) Roughly proportional to;            (d) at least;

log2(1000) is closest to

(a) 3;                      (b) 10;           (c) 50;           (d) 100;    

10.         What is the sum of all natural numbers from 1 to 100?

(a) 3240                    (b) 5050                  (c) 701                (d) 248

Question 2 ( 15 Marks): Answer the following questions:

Name two algorithms have running time where is the size of the input.                                            (2 Marks)                                                   

Write the worst case running time of the corresponding algorithm in the table:                                         (2 Marks)                                                                                     

Algorithm

Its worst case rung time

BFS

………………………………..

Selection sort

………………………………..

Quick sort

……………………………….

How to represent the following directed graph using the adjacency list.

                                                                                (2 Marks)

              

  

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Discover the trees of the DFS-forest of the following graph: (3 Marks)

    

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Compute the running time of the following algorithm:  

(3 Marks)

         

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

f.     The number of operations executed by algorithms A and B is 8n log n and 2n2, respectively. Determine n0 such that A is better than B for n n0.                                (3 Marks)

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Question 3 ( 20 Marks): Answer the following questions:

Rewrite the linearSearch algorithm given below to output all positions of the element in the array L, where S is the set of all elements in L.                                  ( 5 Marks)

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Apply the merge sort algorithm to the sequence of integers A=(20,15, 30, 10, 40, 5, 50, 6, 18), and count the number of comparisons operations.        ( 5 Marks)

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………...........................

Apply the BFS algorithm to the following graph starting from the vertex 3.                                                               ( 5 Marks)

                        

                                

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Sort the following sequence of numbers

A=(20,15, 30, 10, 40, 5, 50, 6, 18)

Using one of the algorithms Bubble, Selection, and Insertion that gives you less number of swaps.                                                        (5 Marks)

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Algorithm

Its worst case rung time

BFS

………………………………..

Selection sort

………………………………..

Quick sort

……………………………….

Explanation / Answer

Ans:

[1]

At most, 10 comparisons are required to search a sorted vector of 1023 elements using the binary search algorithm.

[4] True

The worst case of Linear search makes at most n comparisons to get the result, where n is the length of the list.

[5] O(n)

On taking the larger value of n, the value of n in O(n) is greater than the other whuch causes it to work slowly.

[9] 10

Using the change of base formula:

log2 (1000) = Ln(1000) / Ln(2)

= 6.9077 / 0.6931

= 9.9663 (Approx 10)

[10] 5050

Using Arithmetic Progression Formula:

1 + 2 + 3 + 4 + … + 98 + 99 + 100

Formula: sum = n[2a+(n-1)d]/2

where a is the first term,

d is the difference between terms,

and n is the number of terms.

i.e. a = 1, d = 1, and n = 100

Therefore,

sum = 100[2(1)+(100-1)(1)]/2 = 100[101]/2 = 5050.

Ques.- The worst case running time of the corresponding algorithm in the table:

Algorithm Worst Case Time Complexity BFS The worst case time complexity of BFS algorithm in a graph traversal is O( V + E ) since every vertex and every edge of the graphwill be explored in the worst case scenario Selection Sort O(n2) Quick Sort   O(n2)